# Module 1:

# Quantitative Approaches for Modeling COVID-19 and Other Pandemics





# Outline

- 1) Some universal dynamical features of outbreaks
- 2) What is the basic reproduction number R0 and why is it so important?
- 3) What stops disease outbreaks?
- 4) Essential core of models of disease dynamics: the Susceptible-Infectious-Recovered (SIR) model

# Pandemics in History



#### Plague of Athens, 430-427 BC

• Killed ~1/4 of the city's population

#### Black Plague, 1347-1351

- Killed 30-60% of Europe's population
- Fleas acted as the vector



#### Native American epidemics, 1518-1830's

- Smallpox and other diseases
- May have killed 90% of native Americans

#### Spanish flu (H1N1), 1918-1920

• Infected 1/3 of world population

#### Recent outbreaks

• Ebola, Zika, SARS, MERS

Without strong control measures, can affect large fractions of population

#### Pandemics differ in many ways...

- Transmission rates: fast or slow
- Transmission routes: human vs. non-human carrier, airborne vs. contact
- Mortality & recovery rates

#### But also share many core features...



These core shared features have allowed models of previous pandemics to be re-purposed for predicting the course of COVID-19

#### Key Concept: The "basic reproduction number" R0

R0 = average # of people that each infected person infects, in a nearly entirely susceptible population

# Why is this number so important?



**Grows exponentially fast – outbreak!!!** 



**Decays exponentially fast – rapid recovery!** 



I(n)=(# new infections in n<sup>th</sup> generation) =  $(8)(1)^n = I_0 RO^n$ 

#### No change: borderline between growth and decay

### RO: Summary So Far

R0 = average # of people that each infected person infects, in a nearly entirely susceptible population

R0 > 1: exponential growth (outbreak)

R0 < 1: no outbreak



Issue: Real data is plotted versus time, not generation

#### **Generation Time**

<u>Generation time g</u>: mean time interval between infection of one person, and infections of the people that this person infects



#### **Generation Time**

<u>Generation time g</u>: mean time interval between infection of one person, and infections of the people that this person infects



### Question: How do we determine R0 from real data?



*Issue*: Even if we know g = 5 days, still <u>very</u> hard to see what R0 is from this graph



<u>Math</u>:  $I(t)=I_0 RO^{(t/g)}$ 









## Determine R0 from slope of semi-log plot!



### Next Question: What mechanistic factors influence R0?

R0 = average # of people that each infected person infects, in a nearly entirely susceptible population



# **Thought Question:**

#### Which factor does *social distancing* affect?

- 1) Probability of transmission p
- 2) # of contacts C
- 3) # of days infected D
- 4) All of the above

Answer: (2) # of contacts C

Explanation:

By keeping people away from each other, it reduces the # of contacts we make each day. It does not reduce the # of days we are infected. If you make a contact, it does not reduce the probability p of transmitting the disease.

# R0 vs. Effective R

Basic reproduction number RO:

R0 = average # of people that each infected person infects, in a nearly entirely susceptible population

*Effective reproduction number* R<sub>eff</sub>:

 $R_{eff}$  = average # of people that each infected person infects, when some of the population is immune (=R0 at start of epidemic)



1999 Measles outbreak in the Netherlands

# Effect of Vaccination

*Question*: What fraction of the population must be vaccinated to avoid outbreaks for a disease with basic reproduction number R0?





<u>Math</u>: To avoid an outbreak, need R<sub>eff</sub> < 1: R<sub>eff</sub> = (# of infections if all susceptible)\*(fraction susceptible) < 1

"Herd immunity": Only need to vaccinate a fraction of the herd (i.e. population) to eradicate a disease

R0 \* (1-v) < 1

(1-v) < 1/R0

#### Part 2: Disease Dynamics & the SIR Model

#### Flattening the curve:



#### How Control Measures Could Slow the Outbreak

#### *Key Question*: How can we understand where the shapes of these curves come from?

By The New York Times - Source: Sen Pei and Jeffrey Shaman, Columbia University

# The SIR Model: <u>Susceptible-Infected-(Recovered or Removed)</u>



### Let's turn this into a quantitative model:



In a time interval  $\Delta t$ :

 $\Delta S$  = Change in # susceptibles = - (# who get infected) = -  $\beta S I \Delta t$ 

 $\Delta R$  = Change in # recovered/removed = # infected who recover =  $\gamma I \Delta t$ 

 $\Delta I = Change in \# infected = (\# who get infected) - (\# who recover)$  $\Delta I = \beta S I \Delta t - \gamma I \Delta t$ 

For small  $\Delta t$ , we divide by  $\Delta t$  and write:  $\frac{dS}{dt} = -\beta S I$ 

## SIR model summary



 $\frac{dS}{dt} = -\beta SI$  $\frac{dI}{dt} = \beta SI - \gamma I$  $\frac{dR}{dt} = \gamma I$ 

(Susceptibles get infected by infected)

(Susceptibles get infected & infecteds recover/get removed)

(Infecteds recover or are removed)

### When Does an Outbreak Occur?





#### Comparison between our 2 formulas for R0 formula



#### Extensions of the SIR Model

#### The SIR model contains the essence of nearly all disease dynamics models.

There are many possible extensions, including...

...more states & connections between states:

- A latent period after <u>Exposure but before becoming infectious</u> ('SEIR model')
- An asymptomatic period after becoming infectious, but before showing symptoms.
- Recovered people losing their immunity & returning to susceptible (e.g. flu)
- Different susceptible or infected populations (e.g. young vs. old)

...spatial dynamics:

- Travel, spatial spread between different regions
- Different people contact more or fewer other people

...randomness + time-varying parameters (e.g. seasonal changes):

You will have a chance to play with a few of these in this week's and next week's laboratories...and can play with more on your own!