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Spike Train Analysis Tutorial 

 

In this tutorial, we will analyze real data recorded from an orientation-selective neuron in the 

primary visual cortex.  We will plot the cell’s tuning curves as a function of stimulus orientation, 

see the dynamics of its response over time, and analyze how reliable its response is to multiple 

repetitions of the same stimulus. 

 

I. Background:  Orientation-sensitive cells in the primary visual cortex 
Cells in the primary visual cortex (also known as “V1” for short) respond primarily to the 

appearance or movement of oriented bars located in a particular region of space.  Any particular 

neuron will respond better to some orientations and less well to other orientations.  A plot of the 

tuning curve of such a neuron gives the average firing rate of the neuron as a function of the 

orientation of an oriented stimulus.  This average usually reflects both an averaging across time 

(i.e. counting the number of spikes in a given time window) and an average across multiple 

presentations (or “trials”) of the identical stimulus.  Although the tuning curve characterizes the 

average behavior of a neuron’s response to a given stimulus, we often are interested in knowing 

more about the exact nature of the response firing rate of the neuron.  For example, we might 

want to know: 

1) How does the firing rate of the neuron vary over time? 

2) How regular (‘clock-like’) or irregular is the spacing between individual spikes during 

a trial? 

3) How different are the trials from one another? 

4) How correlated are the spike trains across time, i.e. if we observe the firing rate at one 

point during the trial, can we predict anything about the firing rate at other times? 

 

In today’s lab, we will address the first three of these questions by analyzing spike trains 

generated by an orientation-tuned cell recorded from a cat’s primary visual cortex in Dr. 

Mriganka Sur’s laboratory at MIT.  The cells were stimulated by moving gratings (i.e. 

alternating stripes of black and white) oriented at various angles. 

 

 

II. Loading in the data 
To start, we need to load in the data that was provided to us by the Sur laboratory at MIT.  

Typically, when one receives such data from an experimental lab, the person who took the data 

has organized it into some logical structure.  In our case, the data was organized into a 3-

dimensional array in MATLAB-ready format, as described next.  Let’s load in this data and 

check out the formatting of the data: 

 

First, download the files “Sur_Orientation_SpikeData.mat” and 

“Sur_Orientation_Annotation.m” and save them to your desktop (note: if you do not have the 

MATLAB curve-fitting toolbox, also download the file smooth.m, which is used in this tutorial).  

These files contain the data and notes about it, respectively.   

 

Then change MATLAB’s current directory to the Desktop and open a .m file.  Save your file to 

the same location as the .mat file and name it something appropriate like 

“Sur_SpikeTrainAnalysis.m”. 
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Let’s comment our file as follows and add our usual “clear all” and “close all” statements as the 

first lines of the file: 

 
%Analyze data from recordings of V1 cells responding to oriented  
%gratings presented at various angles 
  
clear all 
close all 
  
Next, we will load in the data and take a look at its format.  To load in data from a .mat 

formatted file all you have to do is type 

 
%LOAD IN DATA AND GATHER INFORMATION 
load Sur_Orientation_SpikeData 
  
Now run your file and you should see that an array of size 18 x 3500 x 30 named “spikes” 

appears in your Workspace panel.   

 

You will notice that the spikes array is of Class uint8, meaning that it contains integers.  This 

formatting is to save memory, but it will actually mess us up later on for technical reasons (you 

can’t multiply uint8 variables by normal MATLAB numbers!).  To convert this to the usual 

MATLAB number format (called ‘double’ for double-precision decimal number) add the line: 

 
spikes = double(spikes); 
 

Ok.  Back to the array size:  You could also get this size by typing size(spikes) at the Command 

Window prompt.  Try this.  The meaning of such an array size is that it is organized into three 

dimensions that you could picture as points arranged in a 3-dimensional grid.  Thus, for example, 

typing “spikes(2, 2000, 28)” (try this at the command prompt) will give us the value of the spikes 

array at the grid location with coordinates (2, 2000, 28), which in this case is zero. 

 

To find out what these 3 dimensions of sizes 18, 3500, and 30 correspond to, open up the file 

“Sur_Orientation_Annotation.m”.  This file has notes from the provider of the data which tell us 

that: 

▪ The first dimension of the data corresponds to the 18 conditions tested:  in the first 16 

sets of experiments, the angle of the grating was oriented and moved at a 0
 
degree 

angle, then a 22.5
0
 angle, then a 45

0
 angle, and so on in steps of 22.5

0
 all the way 

around a circle (up to 337.5
0
).  In the final two experiments, a blank screen of the same 

average brightness (luminance) of the gratings was presented.  These final two 

experiments were control experiments to test the responsiveness of the neuron to the 

same average light level in the absence of a grating.  

 

▪ The second dimension corresponds to the spike train values over time, where a value of 

1 indicates that there was a spike at this time, and a value of 0 indicates no spike.  The 

experiment ran for 3500 ms, with data gathered every 1 ms.  At t=0, the oriented 

grating was turned on; at t=500 ms the grating started moving (with orientation and 

direction specified by the first dimension of this data set; gratings were always oriented 
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perpendicular to the direction of movement), and at t=2500 ms the stimulus was turned 

off. 

 

▪ The third dimension of the data corresponds to the 30 trials that were run for each 

condition.  That is, for each direction of movement, they took 30 separate spike train 

recordings. 

 

Thus, we now know what “spikes(2,2000,8) = 0” means:  it says that, during the 8
th

 trial of 

recording from a bar oriented at 22.5
0
 (the 2

nd
 condition tested), there was no spike (“0”) at the 

2000
th

 time point (=2000 ms after the stimulus was turned on, and 1500 ms after the stimulus 

began drifting).  Whew! 

 

Next let’s put some of the data into MATLAB variables that might prove useful: 

 
%SET UP USEFUL VARIABLES 
NumControls = 2;  %number of control experiments with no grating 
dt = 1;  %spacing between sampled time points [ms] 
t_On = 0;  %time stimulus turns on [ms] 
t_Move = 500; %time stimulus begins moving [ms] 
t_Off = 2500; %time stimulus turns off [ms] 
NumAngles = size(spikes,1) - NumControls  %number of angles tested, equally spaced;    
                                                %last 2 sets of recordings are controls 
NumTimePoints = size(spikes,2)  %number of time points; time was sampled every 1 ms 
NumTrials = size(spikes,3)      %number of trials performed at each angle 
  
The first five lines are information that we only know from reading the annotation file 

information.  The last three lines (NumAngles, NumTimePoints, NumTrials) we could have 

likewise just assigned “by hand” (i.e. just written in the numbers) but by programming it this 

way we can more easily generalize to future data sets we might receive from this laboratory that 

might, for example, have more trials per orientation angle or more angles recorded from.  Note 

the syntax of the “size” command:  “size(array, n)” gives the length of the n
th

 dimension of an 

array.  You can run your code now. 

 

Let’s add a final line that will be very useful in plots: 

 
t_vect = t_On:dt:(NumTimePoints-1)*dt; %time vector for each trial 
 

This gives the time vector that we’ll want to use in our plots.  It runs from time dt to the final 

time of the recording (=NumTimePoints*dt).  Note that, to make this vector the same length as 

the spike train data (i.e. 3500 points) we needed to make the time plot go from t=0 ms to t=3499 

ms (the value of (NumTimePoints-1)*dt).   

 

III.  Making a raster plot 
A) Plot a single trial 

Next let’s make a plot of a spike train for one of the trials.  To do this, we want to plot the vector 

of 0’s (no spike occurred) and 1’s (spike occurred) over time for a given trial and a given 

orientation.  Let’s plot the 20
th

 trial of the 2
nd

 (22.5
0
 orientation) condition.  We’ll plot time along 
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the x-axis and points representing the 0 or 1 (no spike or spike) value on the y-axis.  We can do 

this with: 

 
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
plot(t_vect,spikes(2,:,20),'o') 
xlabel('time (ms)') 
ylabel('spike=1, no spike=0') 
  
We’ve introduced a new MATLAB syntax here:  the colon in spikes(2,:,20) is MATLAB’s 

shorthand way of writing spikes(2,1:end,20) or equivalently spikes(2,1:3500,20) since there are 

3500 time points.  If you run this, you should see that there were 2 spikes on this trial: 

 

 
 

Since we know the stimulus has stopped by 2500 ms, we might only want to plot the first 2500 

ms of data.  To do this, we would need to revise our plot command to read: 

 
plot(t_vect,spikes(2,1:2500,20),'o') 
 

Try this.  Did you get an error?   

 
??? Error using ==> plot 
Vectors must be the same lengths.  
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Can you figure out why?  (try using the length command to figure this out).  The problem is that 

we told MATLAB to plot the full, 3500-element t_vect vs. only 2500 elements of the spikes 

vector.  To plot only the first 2500 elements of t_vect, you can revise your plot line to read: 

 
plot(t_vect(1:2500),spikes(2,1:2500,20),'o') 
 

Run this.  Your plot’s x-axis should now only extend to 2500 ms. 

 

Another “fancy” command that is sometimes nice for visualizing spike trains is to replace the 

“plot” command by the command “stem” which for each x point draws a line from the x-axis to 

your data value.  Try it by replacing the plot command by: 

 
stem(t_vect,spikes(2,:,20),'.') 
 

The last argument to this function specifies the shape of the end point of the line (and the color if 

you choose to add this.  The format of the stem command is just like that of the plot command).  

Try plotting a few more spike trains, corresponding to different trials and/or orientations. 

 

B) Make a raster plot of all trials for a given orientation 

Next let’s make a ‘raster plot’ that shows time on the x-axis and the spike trains of all trials on 

the y-axis.  How can we do this?  Let’s think:  we want to do the same basic routine over and 

over again for each trial… sounds like a for loop, with the loop going from trial = 1 to trial = 

NumTrials.  We also want each trial to be located at a separate y-axis location, so let’s plot the 

first trial at y=1, the second at y=2, the 3
rd

 at y=3, etc. 

 

Let’s try it.  Replace your previous plotting section by: 

 
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
for trial=1:NumTrials 
    plot(t_vect,trial*spikes(2,:,trial),'+') 
    hold on 
end 
xlabel('time (ms)') 
ylabel('trial number') 
hold off 
 

We use hold on to make sure the information is not erased from trial to trial (and turn hold back off 

at the end of this code).  If we had simply given the plot command plot(t_vect,spikes(2,:,trial),'+') 

then every single plot would have appeared at the vertical (i.e. y) location y=1.  By multiplying 

the spikes array by trial, we make each trial plot spikes at y-values equal to the given trial. 

 

The plot you have made, showing spike times for multiple trials with the same stimulus, is called 

a “raster” plot.  Trial 20 should look familiar from part A of this tutorial.  Our raster plot displays 

the spike train data for all trials conducted with this bar orientation. 

 

Sometimes when you plot this long a time period, the spikes will almost overlap on your screen.  

To see whether this is occurring, you can zoom in on portions of the data by clicking on the 
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zoom-in tool (magnifying glass with the “+” inside it (magnifying glass with the “+” inside it) in 

the figure window and then dragging a rectangle around the region you want to zoom in on.  To 

return to the original plot format, double-click on the graph. 

 

Finally, let’s get rid of all of the zeros in the bottom row, as they are superfluous.  We can do this 

by adjusting our y-axis.  Do this by adding an “axis” command between the ylabel and hold off 

lines (type help axis if you can’t remember the format of this command): 

 
axis([0 3500 0.5 NumTrials]) 

 

Run this.  Your final plot should look like the following: 

 
I recommend saving your work at this point if you have not done so recently. 

 

Your code at this point should read: 

 
%Analyze data from recordings of V1 cells responding to oriented  
%gratings presented at various angles 
  
clear all 
close all 
  
%LOAD IN DATA AND GATHER INFORMATION 
load Sur_Orientation_SpikeData 
spikes = double(spikes); 
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%SET UP USEFUL VARIABLES 
NumControls = 2;  %number of control experiments with no grating 
dt = 1;  %spacing between sampled time points [ms] 
t_On = 0;  %time stimulus turns on [ms] 
t_Move = 500; %time stimulus begins moving [ms] 
t_Off = 2500; %time stimulus turns off [ms] 
NumAngles = size(spikes,1) - NumControls  %number of angles tested, equally spaced;    
                                                %last 2 sets of recordings are controls 
NumTimePoints = size(spikes,2)  %number of time points; time was sampled every 1 ms 
NumTrials = size(spikes,3)      %number of trials performed at each angle 
t_vect = t_On:dt:(NumTimePoints-1)*dt; %time vector for each trial 
  
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
for trial=1:NumTrials 
    plot(t_vect,trial*spikes(2,:,trial),'+') 
    hold on 
end 
xlabel('time (ms)') 
ylabel('trial number') 
axis([0 3500 0.5 NumTrials]) 
hold off 
  
 

IV. Calculating the post/peri-stimulus time histogram (PSTH) for this trial 
As you may have noticed, the trial-to-trial variability in the response of this neuron is huge (e.g. 

compare trial 20 to trial 1, especially when the stimulus is off.  This activity in the absence of a 

stimulus is called ‘background activity’).  This is common for neocortical neuron spike trains.  

 

To get a better understanding of this neuron’s typical response, it is helpful to average the data 

across trials and plot the trial-averaged firing rate of a neuron in response to a stimulus.  When 

this trial-averaged firing rate is plotted as a histogram in time bins near (“peri”) or following 

(“post”) the presentation of the stimulus, it is called a PSTH (which is short for “peri-” or “post-” 

stimulus time histogram).  Below we will learn how to create a PSTH for the set of trials of our 

data set corresponding to presentation of a particular angle, and thereby characterize the average 

firing rate response of the neuron to presentation of a stimulus at this angle. 

 

Since we will want to create an average firing rate across trials, let’s as a first step just sum the 

data across trials by typing: 

 
%PLOT AVERAGED (PSTH) DATA FOR ONE PARTICULAR ANGLE 
TrialSum_vect = sum(spikes(2,:,:),3);  %adds up spike trains across trials 
figure(2) 
plot(t_vect,TrialSum_vect,'.') 
xlabel('time (ms)') 
ylabel('total number of spikes') 
  
The array spikes(2,:,:) is a 2-dimensional matrix containing all of the raster data for the 2

nd
 

orientation (22.5
0
), i.e. all time points (the first colon) for all trials (the second colon).  The sum 
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command sum(array, dimension) sums the data in the array across the dimension specified by 

dimension.  In our case, it sums over the 3
rd

 dimension, i.e. over all trials. 

 

Run this code.  You should see the following: 

 
 

The plot gives the total number of spikes that occurred at a given time point over all of the trials.  

Since it is highly unlikely that more than one spike appeared in a given millisecond-sized time 

bin, most of the values are zero or 1.   

 

A more useful quantity to plot along the y-axis is the average spike rate over trials  

 
(#  of spikes in time window for all trials)

(#  of trials)*(time window duration)trials
r   (1) 

where the “time window” duration over which we will compute this average is a single time bin 

(for now...).  Let’s do this, and also multiply by 1000 to convert to Hz.  Replace the final 3 lines 

by: 

 
plot(t_vect,1000*TrialSum_vect/(NumTrials*dt),'.')  
xlabel('time (ms)') 
ylabel('Average firing rate (Hz)') 
 

Run this and you should now see that the rate varies from 0 Hz to 100 Hz.  These numbers make 

sense, 1 spike on a single trial in a time dt=1 ms would correspond to a rate of 1000 Hz; 3 spikes 

on a single trial to 3000 Hz; and 3 spikes in 30 trials to 100 Hz. 

 

Although our plot is technically correct, it’s not very useful because it’s very discontinuous.  

What we really need to do is to smooth this data by instead calculating the averages over a wider 

time bin such as 60 ms.  To do this, we can produce a smoothed set of data by using the 

command smooth(vector, # of points to smooth over), which at each time point produces the 

average of the data centered at the given time point and averaged over the nearest (# of points), 

including the point itself (for more information, see smooth in the help menu).  [Two technical 

notes: 1) the # of points must be an odd number so that the average includes the point itself and 

equal number of points on each side.  If you instead put an even number as this argument, 
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MATLAB will use the number you gave minus one.  2) For the beginning and end of the vector, 

MATLAB only averages over numbers reaching to the end of the vector (e.g. the first point of the 

smoothed vector doesn’t have a point to its left, so there is no smoothing done; the second point 

only has a single point to its left, so the smoothing is done over just 3 points: the point itself and 

the neighbors to the right and left.  Likewise for assigning the end of the smoothed vector.)] 

 

To do this, let’s modify our code so that it smooths over +/- 30 bins (= +/- 30 ms for our data), as 

follows: 

 
%PLOT AVERAGED (PSTH) DATA FOR ONE PARTICULAR ANGLE 
TrialSum_vect = sum(spikes(2,:,:),3);  %adds up spike trains across trials 
SmoothingWidth = 61; %smooths data over +/- [(this # - 1)/2] bins 
TrialSum_smooth_vect = smooth(TrialSum_vect,SmoothingWidth); 
figure(2) 
plot(t_vect,1000*TrialSum_smooth_vect/(NumTrials*dt)) 
xlabel('time (ms)') 
ylabel('Average firing rate (Hz)') 
  
Make sure you understand this code, then run it.  You should see: 

 
 

We notice that the stimulus appears to suppress the firing of this neuron (compare to when the 

stimulus is off at the end of the trial), especially during the period when the stimulus is moving 

(starting at 500 ms, although note that there is some delay or ‘latency’ between the stimulus 

turning on and the signals reaching these neurons).  The firing rate then jumps up when the 

stimulus turns back off (at 2500 ms), before settling back down to its background firing rate.  

This is typical behavior:  sensory cells typically respond most (either with excitation or 

inhibition) when stimuli change.  Try this code again for a different orientation and for different 
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smoothing widths (e.g. orientation condition 13 is a stimulus that highly excites the cell and you 

will again notice that the cell responds most when either the stimulus first turns on, or when it 

first starts moving).  You should notice a latency (delay) in the response, which gives you an 

idea how long it takes for information in the visual world to reach the visual cortex. 

 

 

V. Calculating the Fano factor 
The PSTH gives a measure of the trial-averaged firing rate of a neuron.  To get a measure of the 

variability of the neuron’s response we might try something like counting the number of spikes 

in a given time window and seeing how this varies across trials. 

 

Let’s do this for orientation condition 13 (angle of 270
0
) for the period of time during which the 

stimulus is moving (t=500 to t=2500).  Because there seems to be a latency in the response of the 

neuron, let’s actually start our average at t=600 ms.  In addition, so that we can make sure to 

keep all parts of our program consistent, let’s add a variable called “ThisOrientation,” set it equal 

to 13, and change all references to the orientation condition to “ThisOrientation”.  The last parts 

of your code should now read (changes are noted in boldface): 

 
t_vect = t_On:dt:(NumTimePoints-1)*dt; %time vector for each trial 
ThisOrientation = 13;  %element index of orientation we are currently analyzing 
  
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
for trial=1:NumTrials 
    plot(t_vect,trial*spikes(ThisOrientation,:,trial),'+') 
    hold on 
end 
xlabel('time (ms)') 
ylabel('trial number') 
axis([0 3500 0.5 NumTrials]) 
hold off 
  
%PLOT AVERAGED (PSTH) DATA FOR ONE PARTICULAR ANGLE 
TrialSum_vect = sum(spikes(ThisOrientation,:,:),3);  %adds up spike trains across trials 
SmoothingWidth = 61; %smooths data over +/- [(this # - 1)/2] bins 
TrialSum_smooth_vect = smooth(TrialSum_vect,SmoothingWidth); 
figure(2) 
plot(t_vect,1000*TrialSum_smooth_vect/(NumTrials*dt)) 
xlabel('time (ms)') 
ylabel('Average firing rate (Hz)') 
  
%COMPUTE FANO FACTOR 
TStartCount = 600; %time to start computing average 
TEndCount = 2500; %time to end computing average 
%next line gives number of counts for each trial 
NumCounts_vect = sum(spikes(ThisOrientation,((TStartCount+1)/dt):(TEndCount/dt),:),2) 
 
 

Note that spikes(13,(TStartCount+1)/dt):(TEndCount/dt),:), gives the time points ranging from 

TStartCount to TEndCount for all (indicated by “:”) trials of condition 13 (the divided by dt 

converts times into element indexes; and the +1 is necessary because t=0 is the first element of 
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the spikes array).  To get the total number of spikes occurring over this time interval in each trial, 

we sum over the 2
nd

 dimension of the spikes array.   

 

Run this and verify that the resulting vector is correct by comparing to Figure 1. 

The Fano factor gives the ratio of the variance (the square of the standard deviation) in the 

number of counts N across trials 2

N  to the mean number of counts N : 

   Fano factor = 
2

N

N




 

 

To compute this, add the line: 

 
FanoFactor = (std(NumCounts_vect)^2)/mean(NumCounts_vect) 

 

where std gives the standard deviation of a vector and mean gives the average of the elements. 

 

You should get a Fano factor of 14.4, which is quite high (the typical model of such cells is as a 

Poisson process, which has a Fano factor of 1 (which is still quite variable)).  I think some of the 

extra variability here may relate to the fact that the earlier trials appear to have systematically 

higher firing rates than the second half of the trials.  If we were performing further experiments, 

we probably would want to look into this issue more carefully. 

 

VI. Calculating the inter-spike interval (ISI) histogram and corresponding 

coefficient of variance CVisi 

The Fano factor is a nice way to capture the variability across trials.  The coefficient of variance 

(or “CV”) of the interspike intervals (defined below) gives a complementary measure that 

reflects the regularity of an individual trial’s spike train. 

 

The interspike intervals for a given spike train are the durations of the intervals tisi between 

spikes (for example, in the Integrate-and-Fire Model tutorial, these are calculated analytically for 

the integrate-and-fire neuron receiving constant input).  These intervals are easily obtained from 

spike data by the following strategy: 

 1) Calculate the spike times 

 2) Take the differences between spike times 

 

Let’s do this next.  To calculate the spike times, we’ll use the find command to locate the 1’s in a 

given spike train.  Let’s do this for the first trial of the orientation 13 data, for the section of data 

when the stimulus is on: 

 
%COMPUTE CV_isi 
SpikeTimes_vect = dt*find(abs(spikes(ThisOrientation,TStartCount:TEndCount,1)-1) < 0.00000001) 
  
The find command has as its argument a vector of conditions that can be true or false – in this 

case, whether or not each element of the spikes vector is within 0.00000001 of 1 – and returns 

the indices of the elements of the vector for which the condition is true.  To get the hang of this 

command, I recommend that you try making up some simple vectors and test conditions and play 

with the find command in your Command Window.  For the task at hand, the reason we use the 
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test condition that the absolute value (‘abs’) of the difference from 1 is less than a very small 

number (instead of simply looking for spikes values equal to 1) is that, when numbers are 

assigned as doubles, MATLAB will sometimes consider 1.00000 to be different from 1 (I don’t 

know why).  So, in short, this code is safer.  The dt converts from index elements (which is what 

the find command returns) to time.  If you run this code, you should find that there are 34 spikes 

during this portion of trial 1. 

 

Now to compute the ISI distribution, we just need to take the difference between neighboring 

spike times.  This is done with the diff command (type this): 

 
isi_vect = diff(SpikeTimes_vect) 

 

Compare your isi_vect and SpikeTimes_vect to verify that this worked correctly. 

 

Finally, let’s make a histogram of these values using the “hist” command.  Add: 

 
%plot isi histogram 
figure(3) 
hist(isi_vect,8) 
xlabel('isi (ms)') 
ylabel('Number of occurrences') 
 

This will produce a histogram of your ISI data, binned into 8 bins.  It should look like the 

following: 

 
The y-axis gives the number of times an interspike interval with values in the ranges specified on 

the x-axis occurred.  We see that the most commonly occurring ISI’s are small intervals.  This is 

quite typical of cortical neurons. 
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Finally, the coefficient of variation of this distribution or ‘CVisi’ is defined as the ratio of the 

standard deviation isi  of this distribution to its mean isi: 

  

 CVisi = isi /isi  

 

i.e. CVisi represents how many standard deviations wide the distribution we just plotted is in units 

of its mean.   

 

Let’s compute this.  Append to your code: 

 
%compute CV_isi 
mean_isi = mean(isi_vect) 
std_isi = std(isi_vect) 
CV_isi = mean_isi/std_isi 
 

You should get that isi = 52.39 ms, isi = 50.46 ms, and CVisi = 1.04.  If you wanted to get the 

average firing rate over this time period, you could take the inverse of isi (times 1000 to convert 

to Hz) which gives an average rate of approximately 19 Hz.  CV’s close to 1 in value are very 

typical of neocortical neuron data. 

 

Note that if the spike train does not contain 2 spikes, then you will get a divide by zero error.  

You could write an if statement to catch this possibility before it caused the error. 

 

To get a more accurate measure of the CVisi of this neuron, one could calculate CVisi for all 30 

trials and average these values to get a trial-averaged CVisi.  To save time, we will omit this 

calculation. 

 

Your code at this point should read (I have added a few optional semicolons to suppress output 

of vectors): 

 
%Analyze data from recordings of V1 cells responding to oriented  
%gratings presented at various angles  
  
clear all 
close all 
  
%LOAD IN DATA 
load Sur_Orientation_SpikeData 
spikes = double(spikes); 
  
%SET UP USEFUL VARIABLES 
NumControls = 2;  %number of control experiments with no grating 
dt = 1;  %spacing between sampled time points [ms] 
t_On = 0;  %time stimulus turns on [ms] 
t_Move = 500; %time stimulus begins moving [ms] 
t_Off = 2500; %time stimulus turns off [ms] 
NumAngles = size(spikes,1) - NumControls  %number of angles tested, equally spaced;    
                                %last 2 sets of recordings are controls 
NumTimePoints = size(spikes,2)  %number of time points; time was sampled every 1 ms 
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NumTrials = size(spikes,3)      %number of trials performed at each angle 
t_vect = t_On:dt:(NumTimePoints-1)*dt; %time vector for each trial 
ThisOrientation = 13;  %element index of orientation we are currently analyzing 
  
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
for trial=1:NumTrials 
    plot(t_vect,trial*spikes(ThisOrientation,:,trial),'+') 
    hold on 
end 
xlabel('time (ms)') 
ylabel('trial number') 
axis([0 3500 0.5 NumTrials]) 
hold off 
  
%PLOT AVERAGED DATA (PSTH) FOR ONE PARTICULAR ANGLE 
TrialSum_vect = sum(spikes(ThisOrientation,:,:),3);  %adds up spike trains across trials 
SmoothingWidth = 61; %smooths data over +/- [(this # - 1)/2] bins 
TrialSum_smooth_vect = smooth(TrialSum_vect,SmoothingWidth); 
figure(2) 
plot(t_vect,1000*TrialSum_smooth_vect/(NumTrials*dt)) 
xlabel('time (ms)') 
ylabel('Average firing rate (Hz)') 
  
%COMPUTE FANO FACTOR 
TStartCount = 600; %time to start computing average 
TEndCount = 2500; %time to end computing average 
%next line gives number of counts for each trial 
NumCounts_vect = sum(spikes(ThisOrientation,((TStartCount+1)/dt):(TEndCount/dt),:),2); 
FanoFactor = (std(NumCounts_vect)^2)/mean(NumCounts_vect) 
  
%COMPUTE CV_isi 
SpikeTimes_vect = dt*find(abs(spikes(ThisOrientation,TStartCount:TEndCount,1)-1) < 0.00000001); 
isi_vect = diff(SpikeTimes_vect); 
%plot ISI histogram 
figure(3) 
hist(isi_vect,8) 
xlabel('isi (ms)') 
ylabel('Number of occurrences') 
%compute CV_isi 
mean_isi = mean(isi_vect) 
std_isi = std(isi_vect) 
CV_isi = mean_isi/std_isi 
 

 

VII. Plotting the tuning curve of this neuron 

Finally, let’s plot the tuning curve of this neuron.  Recall that the tuning curve gives the average 

firing rate of the neuron across trials and over the duration of a stimulus, i.e. the average is over 

both time within the trial and across trials.  Let’s plot this tuning curve for the period of time 

when the stimulus is moving, which we recall is from 600 ms to 2500 ms.   

 

To calculate this average we can again use the formula for the trial-averaged rate <r>trial of 

equation (1): 
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(#  of spikes in time window for all trials)

(#  of trials)*(time window duration)trials
r   

This time, however, the duration of the time window over which we are calculating the average 

rate is 1900 ms (= (2500 – 600) ms). 

 

In calculating the Fano factor, we already calculated the number of counts in each trial, which we 

assigned to the NumCounts variable.  Now let’s sum this vector across trials to get the number of 

counts in all trials.  Then we’ll divide this by the # of trials and by the time window duration to 

get the average firing rate (and multiply by 1000 to convert to Hz): 

 
%COMPUTE AVE RATE FOR 1 TRIAL 
TotalCounts = sum(NumCounts_vect) %total spikes across time and trials 
AveRate = 1000*TotalCounts/((TEndCount-TStartCount)*NumTrials) %average across time and trials  
 

You should get an answer of 12.5 Hz for this orientation. 

 

Now we need to get the average rate for all 16 orientations.  We could do this with a for loop, 

looping over all orientations.  However, let’s see if we can be more efficient than that by using 

vectors.  Previously, in our PSTH code, we counted the number of spikes across trials for 

various time points and a particular orientation.  Then, in our Fano factor code, we counted the 

number of spikes over time for various trials and a particular orientation.  Seemingly we should 

be able to combine these two types of averages to get a vector count of the spikes across trials 

and over time for various orientations. 

 

We do this in two steps.  First, make a matrix corresponding to the average across time (like in 

the PSTH) but for all orientations: 

 
%COMPUTE TUNING CURVES 
%next line gives matrix of counts across trials for various orientations and times 
TuningCurveCounts_matrix = sum(spikes(:,((TStartCount+1)/dt):(TEndCount/dt),:),3); 
 

The only difference between the above line and the TrialSum_vect calculation done in 

calculating the PSTH is that we now add an extra dimension (hence going from a vector to a 

matrix) corresponding to all orientations. 

 

Run your code.  Then, at the command prompt, let’s check the size of the resulting matrix: 

 
>> size(TuningCurveCounts_matrix) 
 
ans = 
 
          18        1900 

 

As expected, we are left with a 2-dimensional matrix with the size of the 1
st
 dimension equal to 

the number of orientation angles (+ 2 for the controls) and the size of the 2
nd

 dimension equal to 

the number of time points. 
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Now let’s sum this matrix across the time dimension to get the total number of spikes for each 

orientation across all trials and then convert this counts number to an average rate by dividing by 

both the number of trials and the time per trial: 

 
TuningCurveCounts_vect = sum(TuningCurveCounts_matrix,2) %sum over time dimension 
TuningCurve_AveRate_vect = 1000*TuningCurveCounts_vect/((TEndCount-TStartCount)*NumTrials) 
 

From the output, you should be able to see that the average rate varies considerably with the 

angle. 

 

Finally, let’s plot the data.  To do this, we need to set up an orientation vector to hold all of the 

different angles tested (with spacing between angles  = 360
0
/(Number of angles measured) = 

22.5
0
).  Do this and then make the plot (note: the plot should only contain the first 16 points, as 

the final two are controls).  Add to this section of code: 

 
%plot tuning curve 
DeltaTheta = 360/NumAngles 
Orientation_vect = 0:DeltaTheta:(NumAngles-1)*DeltaTheta; 
figure(4) 
plot(Orientation_vect,TuningCurve_AveRate_vect(1:NumAngles)) 
xlabel('orientation (deg)') 
ylabel('Ave firing rate (Hz)') 
 

Running this, your plot should look like: 

 
We see that this cell is driven best by the grating moving at an angle near 110 degrees, with a 

secondary preference for angles near 290 degrees.  Why should it not be surprising that there are 

these two peaks?  (How many degrees apart are they?).  The two peak locations correspond to a 

grating with the same spatial orientation but being moved in opposite directions.  The cell is 
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driven strongly by this orientation, but responds better to motion in one direction than motion in 

the other direction. 

 

Finally, we might want to consider our “control” experiment.  In the control (conditions 17 and 

18) there was a solid uniform light presented over the full visual field of the animal with the 

same average brightness as the gratings.  Let’s calculate the average firing rate in response to 

these controls.   

 
Control_AveRate = mean(TuningCurve_AveRate_vect(17:18)) 

 

You should find that this rate is approximately 3.23 Hz.  Looking at the average firing rates 

across all orientations in the figure above, we see that for angles around 90 degrees away from 

the peaks, the rate actually goes below this control rate.  It seems sensible that we should really 

plot the difference between the average rates for the various angles and the control rate.  Let’s do 

this: 

 
%plot difference from control average rate 
TuningCurve_RateDiff_vect = TuningCurve_AveRate_vect - Control_AveRate; 
figure(5) 
plot(Orientation_vect,TuningCurve_RateDiff_vect(1:NumAngles)) 
xlabel('orientation (deg)') 
ylabel('Ave firing rate relative to control(Hz)') 
grid on 

 

The last line adds a grid to make the plot pretty.  Your final plot should look like: 

 
The areas around each peak have a classic “center-surround” arrangement:  There is a peak in the 

response near the angle 110
0
 (and near 290

0
 for motion in the opposite direction), with an 

inhibitory “surrounding” region that in this case dips lowest around 90 degrees from the peaks.  

People often refer to 110
0
 (and sometimes 290

0
) as the “preferred” orientations of such a cell, 
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and angles around 20
0
 and 200

0
 as the “cross-oriented” or “orthogonal” directions to indicate that 

these angles are 90 degrees away from the preferred orientations.   

 

Note finally that, if we wanted to, we could add error bars to this graph based on the standard 

deviations we calculated during the Fano Factor calculation. 

 

CONGRATULATIONS!  You have written the code to perform many of the analyses that real 

laboratories do every day on their data!   

 

Your final code for this exercise (please save!) should be: 

 
%Analyze data from recordings of V1 cells responding to oriented  
%gratings presented at various angles  
  
clear all 
close all 
  
%LOAD IN DATA 
load Sur_Orientation_SpikeData 
spikes = double(spikes); 
  
%SET UP USEFUL VARIABLES 
NumControls = 2;  %number of control experiments with no grating 
dt = 1;  %spacing between sampled time points [ms] 
t_On = 0;  %time stimulus turns on [ms] 
t_Move = 500; %time stimulus begins moving [ms] 
t_Off = 2500; %time stimulus turns off [ms] 
NumAngles = size(spikes,1) - NumControls  %number of angles tested, equally spaced;    
                                %last 2 sets of recordings are controls 
NumTimePoints = size(spikes,2)  %number of time points; time was sampled every 1 ms 
NumTrials = size(spikes,3)      %number of trials performed at each angle 
t_vect = t_On:dt:(NumTimePoints-1)*dt; %time vector for each trial 
ThisOrientation = 13;  %element index of orientation we are currently analyzing 
  
%PLOT RASTERS FOR ONE PARTICULAR ANGLE 
figure(1) 
for trial=1:NumTrials 
    plot(t_vect,trial*spikes(ThisOrientation,:,trial),'+') 
    hold on 
end 
xlabel('time (ms)') 
ylabel('trial number') 
axis([0 3500 0.5 NumTrials]) 
hold off 
  
%PLOT AVERAGED DATA (PSTH) FOR ONE PARTICULAR ANGLE 
TrialSum_vect = sum(spikes(ThisOrientation,:,:),3);  %adds up spike trains across trials 
SmoothingWidth = 61; %smooths data over +/- [(this # - 1)/2] bins 
TrialSum_smooth_vect = smooth(TrialSum_vect,SmoothingWidth); 
figure(2) 
plot(t_vect,1000*TrialSum_smooth_vect/(NumTrials*dt)) 
xlabel('time (ms)') 
ylabel('Average firing rate (Hz)') 
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%COMPUTE FANO FACTOR 
TStartCount = 600; %time to start computing average 
TEndCount = 2500; %time to end computing average 
%next line gives number of counts for each trial 
NumCounts_vect = sum(spikes(ThisOrientation,((TStartCount+1)/dt):(TEndCount/dt),:),2); 
FanoFactor = (std(NumCounts_vect)^2)/mean(NumCounts_vect) 
  
%COMPUTE CV_isi 
SpikeTimes_vect = dt*find(abs(spikes(ThisOrientation,TStartCount:TEndCount,1)-1) < 0.00000001); 
isi_vect = diff(SpikeTimes_vect); 
%plot ISI histogram 
figure(3) 
hist(isi_vect,8) 
xlabel('isi (ms)') 
ylabel('Number of occurrences') 
%compute CV_isi 
mean_isi = mean(isi_vect) 
std_isi = std(isi_vect) 
CV_isi = mean_isi/std_isi 
  
%COMPUTE AVE RATE FOR 1 TRIAL 
TotalCounts = sum(NumCounts_vect) %total spikes across time and trials 
AveRate = 1000*TotalCounts/((TEndCount-TStartCount)*NumTrials) %average across time and trials  
  
%COMPUTE TUNING CURVES 
%next line gives matrix of counts across trials for various orientations and times 
TuningCurveCounts_matrix = sum(spikes(:,((TStartCount+1)/dt):(TEndCount/dt),:),3); 
TuningCurveCounts_vect = sum(TuningCurveCounts_matrix,2) %sum over time dimension 
TuningCurve_AveRate_vect = 1000*TuningCurveCounts_vect/((TEndCount-TStartCount)*NumTrials) 
%plot tuning curve 
DeltaTheta = 360/NumAngles 
Orientation_vect = 0:DeltaTheta:(NumAngles-1)*DeltaTheta; 
figure(4) 
plot(Orientation_vect,TuningCurve_AveRate_vect(1:NumAngles)) 
xlabel('orientation (deg)') 
ylabel('Ave firing rate (Hz)') 
Control_AveRate = mean(TuningCurve_AveRate_vect(17:18)) 
%plot difference from control average rate 
TuningCurve_RateDiff_vect = TuningCurve_AveRate_vect - Control_AveRate; 
figure(5) 
plot(Orientation_vect,TuningCurve_RateDiff_vect(1:NumAngles)) 
xlabel('orientation (deg)') 
ylabel('Ave firing rate relative to control(Hz)') 
grid on 
 
 


