
Eigenvectors, Eigenvalues, and Principal Components Analysis (PCA) 
 

In this laboratory, we will analyze a set of data to find the “principal components” along which 
the data is scattered.  Principal components analysis (PCA) is widely used in an enormous 
variety of settings to characterize the variability in a set of measurements.  In sensory systems, it 
is the starting point for models that attempt to describe why sensory neurons respond to the 
features to which they are sensitive.  In face-recognition technologies, it is used to classify the 
primary source of variation among different people’s faces.  A more complicated extension of 
PCA, known as independent components analysis (ICA), has been used to separate the voices of 
independent speakers who are talking simultaneously and has also been used to look for 
independent patterns in electroencephalographic (EEG) data.  More generally, PCA provides an 
algorithm for compressing high-dimensional data down to a few (or several) dimensions that 
often can capture a large fraction of the variability in the full data set.  

 
I. Principal components of a 2-dimensional data set 

In this section of the tutorial, we will calculate the principal components of a randomly 
assigned set of two-dimensional data points (u1,u2).  In general u1 and u2 could correspond to 
literally anything – pixel intensities of photographs, variables corresponding to dice rolls, 
number of wins by the Red Sox (=u1) and Yankees (=u2) in a season, etc.  

To make the situation more directly neuroscience related, we will consider u1 and u2 to be 
the firing rates of the inputs to a neuron in a feedforward network, as shown below:    
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If time were sampled every, e.g. 1 second, we would gather many such data points u = 

(u1, u2) over the course of time and we could see how much variability there was in the data and 
whether there were any correlations between the rates u1 and u2.  Although we will not prove this 
here, one of the reasons we choose this example is that Hebbian learning can be shown to align 
the synaptic weight vector w = [w1 w2] along the direction of the principal components of the 
variability in the (u1,u2) data points.  Since the postsynaptic neuron’s firing rate v = w•u is the 
projection of the input vector u along the weight vector w, this means that the postsynaptic 
neuron’s firing rate v will be able to capture much of the variability in the inputs u.  Under 
certain assumptions, it can be shown that this choice of weights assures that v carries the 
maximum information possible about its inputs. 

In the following section, we will generate data points u from a 2-dimensional, rotated 
Gaussian distribution (i.e. an ellipse of data points).  We will then show that principal 
components analysis finds the principal axes of this ellipse, with the first principal component 
corresponding to the long axis of the ellipse and the second principal component corresponding 
to the short axis of the ellipse. 
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II. Generating rotated Gaussian data 
Let’s jump right in and generate our random data points.  First, as usual, let’s open a .m file and 
name it something identifying like Lab8_2DPCA.m.  Then let’s comment our code and clear all 
variables: 
 
%Generate a 2-D cloud of data points (u1,u2) and then 
%find the principal components of this distribution 
 
clear all; 
close all; 
  
To generate the Gaussian random data oriented in a tilted ellipse relative to the x-y axes, we will 
first generate an elliptical cloud of data oriented with elongated direction along the x axis.  We 
will then rotate this data.  First let’s generate the non-rotated ellipse of random data by 
independently choosing random x-values and random y-values from a Gaussian distribution: 
 
%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA 
%RELATIVE TO THE X-AXIS 
%first generate non-rotated ellipse by independently generating 
%random x-values (placed in the variable z1) and y-values (in variable z2) 
N = 100; %number of random data points 
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from 
                      %a Gaussian distribution of mean 0 and std dev 1 
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33 
 
In this code, z1 gives the random x-coordinates of the points and z2 gives the random y-
coordinates of the points.  The command randn(M,N) generates an M x N array of random 
numbers chosen from a Gaussian distribution of mean zero and standard deviation 1.   
 
Let’s plot the data by adding the lines: 
 
figure(1) 
subplot(2,1,1) 
plot(z1_vect,z2_vect,'.') 
xlabel('z1') 
ylabel('z2') 
axis([-4 4 -4 4]) 
  
We will add a second subplot with the rotated data next.  First, run the above and you should see 
something like the following: 
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Next let’s rotate the data counterclockwise by an angle θ = 600 = π/3 radians.  This can be 
accomplished (see a math text for explanation of the geometry behind this) by multiplying each 
of the (z1,z2) data points by the rotation matrix 

 
cos( ) sin( )
sin( ) cos( )

θ θ
θ θ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
R  

to get our final x-axis and y-axis values (u1,u2): 

  1 1 1

2 2 1

cos( )* sin( )*cos( ) sin( )
sin( )* cos( )*sin( ) cos( )

u z z
u z z

θ θθ θ
θ θθ θ

−−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

2

z
z

 
For a given point with coordinates (z1,z2) this gives the corresponding x and y values of the point 
after it has been rotated counterclockwise by an angle θ.  If we would like to rotate every data 
point, then we can first organize our original (z) data into a matrix of points: 
 
z_mat = [z1_vect; z2_vect]  
 
Do this and run your code to see that it produces a matrix with 100 columns, each of which 
specifies the x- and y-coordinates of a single data point. Then add a semicolon at the end of this 
line to suppress the output. 
 
To get a corresponding matrix of points that are rotated by the angle theta, we simply multiply 
this matrix of data points by the rotation matrix R, as follows: 
 
theta = pi/3   %rotate counterclockwise by this angle [radians] 
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix 
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u_mat = Rotation_mat*z_mat; %data points after rotation 
 
This produces a matrix u_mat whose 100 columns each contain the coordinates of a single (now 
rotated) data point, with x-values of all the data points in the first row and y-values of all the data 
points in the second row.  (You can check this by typing size(u_mat) in the Command Window). 
 
Let’s then plot these points by adding to the end of our code the following: 
 
subplot(2,1,2) 
plot(u_mat(1,:),u_mat(2,:),'.') 
xlabel('u1') 
ylabel('u2') 
axis([-4 4 -4 4]) 
  
Recall that u_mat(1,:) returns the vector containing all values of the first row of the matrix u_mat 
and u_mat(2,:) returns the vector containing all values of the 2nd row of the same matrix.   
 
Running this code you should find the final rotated ellipse of data in the bottom subpanel: 

 
 
Great!  Now we have a data set of random points to work with.  Your code at this point should 
read: 
 
%Generate a 2-D cloud of data points (u1,u2) and then 
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%find the principal components of this distribution 
  
clear all; 
close all; 
  
%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA 
%RELATIVE TO THE X-AXIS 
%first generate non-rotated ellipse by independently generating 
%random x-values (placed in the variable z1) and y-values (in variable z2) 
N = 100; %number of random data points 
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from 
                      %a Gaussian distribution of mean 0 and std dev 1 
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33 
  
figure(1) 
subplot(2,1,1) 
plot(z1_vect,z2_vect,'.') 
xlabel('z1') 
ylabel('z2') 
axis([-4 4 -4 4]) 
  
z_mat = [z1_vect; z2_vect]; %data points before rotation 
theta = pi/3   %rotate counterclockwise by this angle [radians] 
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix 
u_mat = Rotation_mat*z_mat; %data points after rotation 
  
subplot(2,1,2) 
plot(u_mat(1,:),u_mat(2,:),'.') 
xlabel('u1') 
ylabel('u2') 
axis([-4 4 -4 4]) 
 
 
III. Finding the principal components of the data 
Now that we have the data points (u1,u2) generated, we’ll next generate the covariance matrix Q 
with elements Qij=<uiuj>.  If we are very clever, we can actually generate this in a single line of 
code!  Note that the “outer product” of the vector u by itself is given by: 
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If we average this across all of the data points, we get the correlation matrix Q: 

 ( )
2
1 1 21

1 2 2
2 2 1 2

u u uu
u u

u u u u

⎛ ⎞⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
Q  

To perform this average, we need to sum over all data points and then divide by the number of 
data points N (and recall that each data point corresponds to a column of the matrix u_mat).  This 
can be simply done with the command (type this below the u_mat assignment): 
 
%DEFINE CORRELATION MATRIX Q 
Q_mat = (u_mat*u_mat')/N 
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You should convince yourself that this code does indeed do the operations described in the 
equations above.  To do this, I recommend trying this out by hand on a much simpler data set 
that you can write on a piece of paper, e.g. try an example with N=3 data points by choosing 
u_mat = [1 2 2; 4 2 5] and confirm that the result is a 2 x 2 matrix whose values correspond to 
the averages across the 3 data points of the quantities in the definition of Q.   In doing this, recall 
that the transpose of this matrix, u_mat’, is defined by interchanging the rows and columns, i.e. 
the first row of u_mat becomes the first column of u_mat’ and the second row of u_mat becomes 
the second column of u_mat’ so that u_mat’ = [1 4; 2 2; 2 5].   Then, verify your by-hand 
solutions by entering the values for u_mat and the formula for Q_mat in the MATLAB 
Command Window. 
 
Let’s now return to our main code:  If you leave the semicolon off the Q assignment and run 
your code you should get values for Q.  They will differ from run to run due to the random 
number generator, but you should notice certain things:   
 ▪ First, the variance along the x-direction, Q11, should be smaller than the variance along 
the y-direction, Q22, consistent with the data having been rotated by 600 (see subplot 2 of Figure 
1—it will be helpful in visualizing the data to resize your Figure 1 window so that the plots 
appear to be square, thus more naturally reflecting that both axes go over the same range [-4,4]).   
This can be done with the command “axis square”, “axis equal”, or “axis image” – consult the 
help menus for the distinctions between these. 
 
 ▪ Second, the “off-diagonal” elements Q12 and Q21 should be equal to each other and 
positive because the data are positively correlated (i.e. tend to both be positive or both be 
negative). Terminology note: “off-diagonal” elements is common terminology for those elements 
not lying along the diagonal line running from top-left to bottom-right of the matrix and 
therefore not having indices equal to each other.  The elements lying along the diagonal are, not 
surprisingly, called the “diagonal elements” or the “elements along the diagonal”.   
 
Finally, let’s calculate the principal components of the data, i.e. the directions along which the 
long and short axes of the ellipse lie.  These directions correspond to the eigenvectors of Q.  The 
eigenvalues of Q then correspond to the standard deviations of the corresponding lengths of the 
cloud of points along these directions. 
 
To obtain these eigenvectors and eigenvalues we use the MATLAB command eig as follows: 
 
%GENERATE EIGENVALUES AND EIGENVECTORS OF Q 
%EIGENVECTORS ARE ASSIGNED AS THE COLUMNS OF THE 1ST MATRIX BELOW 
%THE CORRESPONDING EIGENVALS ARE ASSIGNED AS THE DIAGONAL ELEMENTS OF THE 
2ND MATRIX BELOW 
[Eigenvect_mat,Eigenval_mat] = eig(Q_mat) 
  
Leave the semicolon off this command so that you can inspect the result.  In the final two 
outputs, you should see something like (the exact numbers will vary due to the random number 
generator): 
 
Eigenvect_mat = 
 
   -0.8752    0.4837 
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    0.4837    0.8752 
 
Eigenval_mat = 
 
    0.1143         0 
         0    0.9166 
 
The eigenvector matrix consists of two column vectors ξ1 = [-0.8752; 0.4837] and ξ2 = [0.4837; 
0.8752] which are called the “principal component vectors” of this data set (Note: ξ is the Greek 
letter “xi” and is often used to denote eigenvectors).  By MATLAB convention, these vectors 
are of length 1.  They are also perpendicular, as expected:  this can be checked by noting that the 
dot product ξ1•ξ2 = cos(θ) where θ = the angle between the vectors (and the lengths are equal to 
1 so that they do not appear in this expression).  For perpendicular vectors, θ = 900 so cos(θ) = 0.  
This is indeed the case, as can be verified by calculating the dot product between ξ1 and ξ2 (try 
this by typing at the Command Prompt Eigenvect_mat(:,1)'*Eigenvect_mat(:,2), which will take 
the dot or “inner” product of the two vectors). 
 
The eigenvalue matrix above is a “diagonal matrix” (translation: all nonzero elements are on the 
diagonal) whose diagonal elements give the eigenvalues corresponding to the eigenvectors.  The 
eigenvalues λ1=.1143 (for the short axis of the ellipse) and λ2 = .9166 (for the long axis of the 
ellipse) give the variance of the data along the directions corresponding to the two eigenvectors.  
To obtain the standard deviations in the spread of the data along the axes of the ellipse of data, 
we must take the square root of these eigenvalues.   
 
Let’s put these values into separate variables of their own: 
 
xi1_vect = Eigenvect_mat(:,1)  %first eigenvector, length =1  
xi2_vect = Eigenvect_mat(:,2)   %second eigenvector, length =1  
sigma1 = sqrt(Eigenval_mat(1,1))  %length of ellipse along 1st eigenvect direction 
sigma2 = sqrt(Eigenval_mat(2,2))  %length of ellipse along 2nd eigenvect direction 
  
Run this code and check your output to make sure the eigenvectors and eigenvals were assigned 
correctly.  You should find that the sigma’s are quite close to the standard deviation of the 
ellipses we defined for the cloud of data in the previous section (1 along the long axis, 0.33 along 
the short axis).   
 
Finally, let’s plot the eigenvectors (with length given by the corresponding eigenvalue) on top of 
our data cloud to confirm our claim that these correspond to the standard deviations of the long 
and short axes of the ellipse of data points.  First let’s define vectors pointing along the 
eigenvectors but with lengths equal to the corresponding sigmas: 
 
sigma1_vect = sigma1*xi1_vect;  %first eigenvector stretched to length sigma1 
sigma2_vect = sigma2*xi2_vect;  %2nd eigenvector stretched to length sigma2 
  
The above just give two individual data points that correspond to the endpoints of the vectors 
we’d like to draw.  For each vector, let’s draw a line from this endpoint to negative of its value 
(so that the line crosses through the whole ellipse on both sides of the origin).  To draw these 
vectors, we’ll plot a line from between the points (-sigma1_vect(1),-sigma1_vect(2)) and 
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(sigma1_vect(1),sigma1_vect(2)) for the first vector and correspondingly for the second vector.  
To do this, add to the plotting section:  
 
hold on 
plot([-sigma1_vect(1) sigma1_vect(1)],[-sigma1_vect(2) sigma1_vect(2)],'m','linewidth',3) 
plot([-sigma2_vect(1) sigma2_vect(1)],[-sigma2_vect(2) sigma2_vect(2)],'r','linewidth',3) 
hold off 
 
The ‘linewidth’ argument to the plot command tells MATLAB to plot these lines with a 
thickness of 3 points so that they are more visible.  Your end result should look something like 
the figure below.  If your standard deviation bars along the directions of the principal 
components do not look perpendicular to each other, this is probably an artifact of your plot 
panel not being square—you should resize your window so that the plot panel is square as in the 
figure below.   

 
Note how nicely we can see in these plots that the 
eigenvectors of the correlation matrix Q extracted the 
principal components of the data:  the first principal 
component corresponds to the eigenvector with the 
largest corresponding eigenvalue and represents the 
direction along which the data set has its maximum 
standard deviation – this direction is useful because it 
indicates the strongest trend in the data if we have to 
characterize the data set with a single vector.  In this 
case, we note that the trend pulled out by the first 
principal component is that the x- and y-values are 
correlated maximally along an axis oriented 600 
clockwise from the x-axis.  The second principal 
component will always be perpendicular to the first and, 
in the case of higher-dimensional data sets will indicate 
the next largest direction of spread of the data (under the 
constraint that this direction must be chosen to be 
perpendicular to the first direction; likewise for higher 
dimensional data, all higher principal components are 
chosen to be perpendicular to the previously chosen 
principal components and, in order, represent the largest 
direction of remaining variance).  Thus, one can think of 
PCA as fitting a data set to a multi-dimensional ellipse 
with the eigenvector/components corresponding to the 
direction of the axes of the ellipse and the corresponding 
eigenvalues to the standard deviation along these 
directions.   
 
In practice, one can often account for most of the 
variability in a set of high-dimensional data with only a 
relatively small number of principal components.  For 
example, in our case, we capture most of the variability 
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in the data with only 1 principal component as seen by the relative spreads along the two 
principal components in the neighboring graph. 
 
Congratulations—you’ve written a program that “discovers” the structure in a set of data!  Your 
final code for this section should read: 
 
%Generate a 2-D cloud of data points (u1,u2) and then 
%find the principal components of this distribution 
 
clear all; 
close all; 
  
%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA 
%RELATIVE TO THE X-AXIS 
%first generate non-rotated ellipse by independently generating 
%random x-values (placed in the variable z1) and y-values (in variable z2) 
N = 100; %number of random data points 
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from 
                      %a Gaussian distribution of mean 0 and std dev 1 
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33 
  
figure(1) 
subplot(2,1,1) 
plot(z1_vect,z2_vect,'.') 
xlabel('z1') 
ylabel('z2') 
axis([-4 4 -4 4]) 
  
z_mat = [z1_vect; z2_vect]; %data points before rotation 
theta = pi/3   %rotate counterclockwise by this angle [radians] 
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix 
u_mat = Rotation_mat*z_mat; %data points after rotation 
  
subplot(2,1,2) 
plot(u_mat(1,:),u_mat(2,:),'.') 
xlabel('u1') 
ylabel('u2') 
axis([-4 4 -4 4]) 
  
%DEFINE CORRELATION MATRIX Q 
Q_mat = (u_mat*u_mat')/N 
  
%GENERATE EIGENVALUES AND EIGENVECTORS OF Q 
%EIGENVECTORS ARE ASSIGNED AS THE COLUMNS OF THE 1ST MATRIX BELOW 
%THE CORRESPONDING EIGENVALS ARE ASSIGNED AS THE DIAGONAL ELEMENTS OF THE 
2ND MATRIX BELOW 
[Eigenvect_mat,Eigenval_mat] = eig(Q_mat) 
  
xi1_vect = Eigenvect_mat(:,1)  %first eigenvector, length =1  
xi2_vect = Eigenvect_mat(:,2)   %second eigenvector, length =1  
sigma1 = sqrt(Eigenval_mat(1,1))  %length of ellipse along 1st eigenvect direction 
sigma2 = sqrt(Eigenval_mat(2,2))  %length of ellipse along 2nd eigenvect direction 
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sigma1_vect = sigma1*xi1_vect;  %first eigenvector stretched to length sigma1 
sigma2_vect = sigma2*xi2_vect;  %2nd eigenvector stretched to length sigma2 
  
hold on 
plot([-sigma1_vect(1) sigma1_vect(1)],[-sigma1_vect(2) sigma1_vect(2)],'m','linewidth',3) 
plot([-sigma2_vect(1) sigma2_vect(1)],[-sigma2_vect(2) sigma2_vect(2)],'r','linewidth',3) 
hold off 
 


