
Eigenvectors, Eigenvalues, and Principal Components Analysis (PCA)

In this laboratory, we will analyze a set of data to find the “principal components” along which
the data is scattered. Principal components analysis (PCA) is widely used in an enormous
variety of settings to characterize the variability in a set of measurements. In sensory systems, it
is the starting point for models that attempt to describe why sensory neurons respond to the
features to which they are sensitive. In face-recognition technologies, it is used to classify the
primary source of variation among different people’s faces. A more complicated extension of
PCA, known as independent components analysis (ICA), has been used to separate the voices of
independent speakers who are talking simultaneously and has also been used to look for
independent patterns in electroencephalographic (EEG) data. More generally, PCA provides an
algorithm for compressing high-dimensional data down to a few (or several) dimensions that
often can capture a large fraction of the variability in the full data set.

I. Principal components of a 2-dimensional data set

In this section of the tutorial, we will calculate the principal components of a randomly
assigned set of two-dimensional data points (u1,u2). In general u1 and u2 could correspond to
literally anything – pixel intensities of photographs, variables corresponding to dice rolls,
number of wins by the Red Sox (=u1) and Yankees (=u2) in a season, etc.

To make the situation more directly neuroscience related, we will consider u1 and u2 to be
the firing rates of the inputs to a neuron in a feedforward network, as shown below:

u1

u2

w1

w2

v

u1

u2

w1

w2

v

If time were sampled every, e.g. 1 second, we would gather many such data points u =

(u1, u2) over the course of time and we could see how much variability there was in the data and
whether there were any correlations between the rates u1 and u2. Although we will not prove this
here, one of the reasons we choose this example is that Hebbian learning can be shown to align
the synaptic weight vector w = [w1 w2] along the direction of the principal components of the
variability in the (u1,u2) data points. Since the postsynaptic neuron’s firing rate v = w•u is the
projection of the input vector u along the weight vector w, this means that the postsynaptic
neuron’s firing rate v will be able to capture much of the variability in the inputs u. Under
certain assumptions, it can be shown that this choice of weights assures that v carries the
maximum information possible about its inputs.

In the following section, we will generate data points u from a 2-dimensional, rotated
Gaussian distribution (i.e. an ellipse of data points). We will then show that principal
components analysis finds the principal axes of this ellipse, with the first principal component
corresponding to the long axis of the ellipse and the second principal component corresponding
to the short axis of the ellipse.

1

II. Generating rotated Gaussian data
Let’s jump right in and generate our random data points. First, as usual, let’s open a .m file and
name it something identifying like Lab8_2DPCA.m. Then let’s comment our code and clear all
variables:

%Generate a 2-D cloud of data points (u1,u2) and then
%find the principal components of this distribution

clear all;
close all;

To generate the Gaussian random data oriented in a tilted ellipse relative to the x-y axes, we will
first generate an elliptical cloud of data oriented with elongated direction along the x axis. We
will then rotate this data. First let’s generate the non-rotated ellipse of random data by
independently choosing random x-values and random y-values from a Gaussian distribution:

%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA
%RELATIVE TO THE X-AXIS
%first generate non-rotated ellipse by independently generating
%random x-values (placed in the variable z1) and y-values (in variable z2)
N = 100; %number of random data points
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from
 %a Gaussian distribution of mean 0 and std dev 1
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33

In this code, z1 gives the random x-coordinates of the points and z2 gives the random y-
coordinates of the points. The command randn(M,N) generates an M x N array of random
numbers chosen from a Gaussian distribution of mean zero and standard deviation 1.

Let’s plot the data by adding the lines:

figure(1)
subplot(2,1,1)
plot(z1_vect,z2_vect,'.')
xlabel('z1')
ylabel('z2')
axis([-4 4 -4 4])

We will add a second subplot with the rotated data next. First, run the above and you should see
something like the following:

2

Next let’s rotate the data counterclockwise by an angle θ = 600 = π/3 radians. This can be
accomplished (see a math text for explanation of the geometry behind this) by multiplying each
of the (z1,z2) data points by the rotation matrix

cos() sin()
sin() cos()

θ θ
θ θ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
R

to get our final x-axis and y-axis values (u1,u2):

 1 1 1

2 2 1

cos()* sin()*cos() sin()
sin()* cos()*sin() cos()

u z z
u z z

θ θθ θ
θ θθ θ

−−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2

2

z
z

For a given point with coordinates (z1,z2) this gives the corresponding x and y values of the point
after it has been rotated counterclockwise by an angle θ. If we would like to rotate every data
point, then we can first organize our original (z) data into a matrix of points:

z_mat = [z1_vect; z2_vect]

Do this and run your code to see that it produces a matrix with 100 columns, each of which
specifies the x- and y-coordinates of a single data point. Then add a semicolon at the end of this
line to suppress the output.

To get a corresponding matrix of points that are rotated by the angle theta, we simply multiply
this matrix of data points by the rotation matrix R, as follows:

theta = pi/3 %rotate counterclockwise by this angle [radians]
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix

3

u_mat = Rotation_mat*z_mat; %data points after rotation

This produces a matrix u_mat whose 100 columns each contain the coordinates of a single (now
rotated) data point, with x-values of all the data points in the first row and y-values of all the data
points in the second row. (You can check this by typing size(u_mat) in the Command Window).

Let’s then plot these points by adding to the end of our code the following:

subplot(2,1,2)
plot(u_mat(1,:),u_mat(2,:),'.')
xlabel('u1')
ylabel('u2')
axis([-4 4 -4 4])

Recall that u_mat(1,:) returns the vector containing all values of the first row of the matrix u_mat
and u_mat(2,:) returns the vector containing all values of the 2nd row of the same matrix.

Running this code you should find the final rotated ellipse of data in the bottom subpanel:

Great! Now we have a data set of random points to work with. Your code at this point should
read:

%Generate a 2-D cloud of data points (u1,u2) and then

4

%find the principal components of this distribution

clear all;
close all;

%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA
%RELATIVE TO THE X-AXIS
%first generate non-rotated ellipse by independently generating
%random x-values (placed in the variable z1) and y-values (in variable z2)
N = 100; %number of random data points
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from
 %a Gaussian distribution of mean 0 and std dev 1
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33

figure(1)
subplot(2,1,1)
plot(z1_vect,z2_vect,'.')
xlabel('z1')
ylabel('z2')
axis([-4 4 -4 4])

z_mat = [z1_vect; z2_vect]; %data points before rotation
theta = pi/3 %rotate counterclockwise by this angle [radians]
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix
u_mat = Rotation_mat*z_mat; %data points after rotation

subplot(2,1,2)
plot(u_mat(1,:),u_mat(2,:),'.')
xlabel('u1')
ylabel('u2')
axis([-4 4 -4 4])

III. Finding the principal components of the data
Now that we have the data points (u1,u2) generated, we’ll next generate the covariance matrix Q
with elements Qij=<uiuj>. If we are very clever, we can actually generate this in a single line of
code! Note that the “outer product” of the vector u by itself is given by:

 ()
2

1 1 1 2
1 2 2

2 2 1 2

u u u u
u u

u u u u
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

If we average this across all of the data points, we get the correlation matrix Q:

 ()
2
1 1 21

1 2 2
2 2 1 2

u u uu
u u

u u u u

⎛ ⎞⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
Q

To perform this average, we need to sum over all data points and then divide by the number of
data points N (and recall that each data point corresponds to a column of the matrix u_mat). This
can be simply done with the command (type this below the u_mat assignment):

%DEFINE CORRELATION MATRIX Q
Q_mat = (u_mat*u_mat')/N

5

You should convince yourself that this code does indeed do the operations described in the
equations above. To do this, I recommend trying this out by hand on a much simpler data set
that you can write on a piece of paper, e.g. try an example with N=3 data points by choosing
u_mat = [1 2 2; 4 2 5] and confirm that the result is a 2 x 2 matrix whose values correspond to
the averages across the 3 data points of the quantities in the definition of Q. In doing this, recall
that the transpose of this matrix, u_mat’, is defined by interchanging the rows and columns, i.e.
the first row of u_mat becomes the first column of u_mat’ and the second row of u_mat becomes
the second column of u_mat’ so that u_mat’ = [1 4; 2 2; 2 5]. Then, verify your by-hand
solutions by entering the values for u_mat and the formula for Q_mat in the MATLAB
Command Window.

Let’s now return to our main code: If you leave the semicolon off the Q assignment and run
your code you should get values for Q. They will differ from run to run due to the random
number generator, but you should notice certain things:
 ▪ First, the variance along the x-direction, Q11, should be smaller than the variance along
the y-direction, Q22, consistent with the data having been rotated by 600 (see subplot 2 of Figure
1—it will be helpful in visualizing the data to resize your Figure 1 window so that the plots
appear to be square, thus more naturally reflecting that both axes go over the same range [-4,4]).
This can be done with the command “axis square”, “axis equal”, or “axis image” – consult the
help menus for the distinctions between these.

 ▪ Second, the “off-diagonal” elements Q12 and Q21 should be equal to each other and
positive because the data are positively correlated (i.e. tend to both be positive or both be
negative). Terminology note: “off-diagonal” elements is common terminology for those elements
not lying along the diagonal line running from top-left to bottom-right of the matrix and
therefore not having indices equal to each other. The elements lying along the diagonal are, not
surprisingly, called the “diagonal elements” or the “elements along the diagonal”.

Finally, let’s calculate the principal components of the data, i.e. the directions along which the
long and short axes of the ellipse lie. These directions correspond to the eigenvectors of Q. The
eigenvalues of Q then correspond to the standard deviations of the corresponding lengths of the
cloud of points along these directions.

To obtain these eigenvectors and eigenvalues we use the MATLAB command eig as follows:

%GENERATE EIGENVALUES AND EIGENVECTORS OF Q
%EIGENVECTORS ARE ASSIGNED AS THE COLUMNS OF THE 1ST MATRIX BELOW
%THE CORRESPONDING EIGENVALS ARE ASSIGNED AS THE DIAGONAL ELEMENTS OF THE
2ND MATRIX BELOW
[Eigenvect_mat,Eigenval_mat] = eig(Q_mat)

Leave the semicolon off this command so that you can inspect the result. In the final two
outputs, you should see something like (the exact numbers will vary due to the random number
generator):

Eigenvect_mat =

 -0.8752 0.4837

6

 0.4837 0.8752

Eigenval_mat =

 0.1143 0
 0 0.9166

The eigenvector matrix consists of two column vectors ξ1 = [-0.8752; 0.4837] and ξ2 = [0.4837;
0.8752] which are called the “principal component vectors” of this data set (Note: ξ is the Greek
letter “xi” and is often used to denote eigenvectors). By MATLAB convention, these vectors
are of length 1. They are also perpendicular, as expected: this can be checked by noting that the
dot product ξ1•ξ2 = cos(θ) where θ = the angle between the vectors (and the lengths are equal to
1 so that they do not appear in this expression). For perpendicular vectors, θ = 900 so cos(θ) = 0.
This is indeed the case, as can be verified by calculating the dot product between ξ1 and ξ2 (try
this by typing at the Command Prompt Eigenvect_mat(:,1)'*Eigenvect_mat(:,2), which will take
the dot or “inner” product of the two vectors).

The eigenvalue matrix above is a “diagonal matrix” (translation: all nonzero elements are on the
diagonal) whose diagonal elements give the eigenvalues corresponding to the eigenvectors. The
eigenvalues λ1=.1143 (for the short axis of the ellipse) and λ2 = .9166 (for the long axis of the
ellipse) give the variance of the data along the directions corresponding to the two eigenvectors.
To obtain the standard deviations in the spread of the data along the axes of the ellipse of data,
we must take the square root of these eigenvalues.

Let’s put these values into separate variables of their own:

xi1_vect = Eigenvect_mat(:,1) %first eigenvector, length =1
xi2_vect = Eigenvect_mat(:,2) %second eigenvector, length =1
sigma1 = sqrt(Eigenval_mat(1,1)) %length of ellipse along 1st eigenvect direction
sigma2 = sqrt(Eigenval_mat(2,2)) %length of ellipse along 2nd eigenvect direction

Run this code and check your output to make sure the eigenvectors and eigenvals were assigned
correctly. You should find that the sigma’s are quite close to the standard deviation of the
ellipses we defined for the cloud of data in the previous section (1 along the long axis, 0.33 along
the short axis).

Finally, let’s plot the eigenvectors (with length given by the corresponding eigenvalue) on top of
our data cloud to confirm our claim that these correspond to the standard deviations of the long
and short axes of the ellipse of data points. First let’s define vectors pointing along the
eigenvectors but with lengths equal to the corresponding sigmas:

sigma1_vect = sigma1*xi1_vect; %first eigenvector stretched to length sigma1
sigma2_vect = sigma2*xi2_vect; %2nd eigenvector stretched to length sigma2

The above just give two individual data points that correspond to the endpoints of the vectors
we’d like to draw. For each vector, let’s draw a line from this endpoint to negative of its value
(so that the line crosses through the whole ellipse on both sides of the origin). To draw these
vectors, we’ll plot a line from between the points (-sigma1_vect(1),-sigma1_vect(2)) and

7

(sigma1_vect(1),sigma1_vect(2)) for the first vector and correspondingly for the second vector.
To do this, add to the plotting section:

hold on
plot([-sigma1_vect(1) sigma1_vect(1)],[-sigma1_vect(2) sigma1_vect(2)],'m','linewidth',3)
plot([-sigma2_vect(1) sigma2_vect(1)],[-sigma2_vect(2) sigma2_vect(2)],'r','linewidth',3)
hold off

The ‘linewidth’ argument to the plot command tells MATLAB to plot these lines with a
thickness of 3 points so that they are more visible. Your end result should look something like
the figure below. If your standard deviation bars along the directions of the principal
components do not look perpendicular to each other, this is probably an artifact of your plot
panel not being square—you should resize your window so that the plot panel is square as in the
figure below.

Note how nicely we can see in these plots that the
eigenvectors of the correlation matrix Q extracted the
principal components of the data: the first principal
component corresponds to the eigenvector with the
largest corresponding eigenvalue and represents the
direction along which the data set has its maximum
standard deviation – this direction is useful because it
indicates the strongest trend in the data if we have to
characterize the data set with a single vector. In this
case, we note that the trend pulled out by the first
principal component is that the x- and y-values are
correlated maximally along an axis oriented 600
clockwise from the x-axis. The second principal
component will always be perpendicular to the first and,
in the case of higher-dimensional data sets will indicate
the next largest direction of spread of the data (under the
constraint that this direction must be chosen to be
perpendicular to the first direction; likewise for higher
dimensional data, all higher principal components are
chosen to be perpendicular to the previously chosen
principal components and, in order, represent the largest
direction of remaining variance). Thus, one can think of
PCA as fitting a data set to a multi-dimensional ellipse
with the eigenvector/components corresponding to the
direction of the axes of the ellipse and the corresponding
eigenvalues to the standard deviation along these
directions.

In practice, one can often account for most of the
variability in a set of high-dimensional data with only a
relatively small number of principal components. For
example, in our case, we capture most of the variability

8

in the data with only 1 principal component as seen by the relative spreads along the two
principal components in the neighboring graph.

Congratulations—you’ve written a program that “discovers” the structure in a set of data! Your
final code for this section should read:

%Generate a 2-D cloud of data points (u1,u2) and then
%find the principal components of this distribution

clear all;
close all;

%GENERATE ELLIPSE OF RANDOM DATA TILTED AT AN ANGLE THETA
%RELATIVE TO THE X-AXIS
%first generate non-rotated ellipse by independently generating
%random x-values (placed in the variable z1) and y-values (in variable z2)
N = 100; %number of random data points
z1_vect = randn(1,N); %generates a 1x100 vector of values chosen from
 %a Gaussian distribution of mean 0 and std dev 1
z2_vect = 0.33*randn(1,N); %Gaussian random of mean 0 and std dev 0.33

figure(1)
subplot(2,1,1)
plot(z1_vect,z2_vect,'.')
xlabel('z1')
ylabel('z2')
axis([-4 4 -4 4])

z_mat = [z1_vect; z2_vect]; %data points before rotation
theta = pi/3 %rotate counterclockwise by this angle [radians]
Rotation_mat = [cos(theta) -sin(theta);sin(theta) cos(theta)] %rotation matrix
u_mat = Rotation_mat*z_mat; %data points after rotation

subplot(2,1,2)
plot(u_mat(1,:),u_mat(2,:),'.')
xlabel('u1')
ylabel('u2')
axis([-4 4 -4 4])

%DEFINE CORRELATION MATRIX Q
Q_mat = (u_mat*u_mat')/N

%GENERATE EIGENVALUES AND EIGENVECTORS OF Q
%EIGENVECTORS ARE ASSIGNED AS THE COLUMNS OF THE 1ST MATRIX BELOW
%THE CORRESPONDING EIGENVALS ARE ASSIGNED AS THE DIAGONAL ELEMENTS OF THE
2ND MATRIX BELOW
[Eigenvect_mat,Eigenval_mat] = eig(Q_mat)

xi1_vect = Eigenvect_mat(:,1) %first eigenvector, length =1
xi2_vect = Eigenvect_mat(:,2) %second eigenvector, length =1
sigma1 = sqrt(Eigenval_mat(1,1)) %length of ellipse along 1st eigenvect direction
sigma2 = sqrt(Eigenval_mat(2,2)) %length of ellipse along 2nd eigenvect direction

9

10

sigma1_vect = sigma1*xi1_vect; %first eigenvector stretched to length sigma1
sigma2_vect = sigma2*xi2_vect; %2nd eigenvector stretched to length sigma2

hold on
plot([-sigma1_vect(1) sigma1_vect(1)],[-sigma1_vect(2) sigma1_vect(2)],'m','linewidth',3)
plot([-sigma2_vect(1) sigma2_vect(1)],[-sigma2_vect(2) sigma2_vect(2)],'r','linewidth',3)
hold off

