
The Integrate-and-Fire Model 
 
The integrate-and-fire neuron is one of the simplest models of a neuron’s electrical properties 
and probably the most commonly used in the field of neuroscience.  The essence of the model is 
to divide the voltage changes of the neuron into two parts:   
 1) Below threshold, it is assumed that the membrane behaves passively (i.e. has no 
voltage-dependent ion channels) and acts as a leaky capacitor whose voltage, in the absence of 
injected current, decays (or “leaks”) to a resting level EL (short for “ELeak”).   
 2) When the voltage reaches the action potential threshold (due to injected currents 
charging up the membrane), the model assumes that the voltage spikes immediately to a level 
Vspike and is then immediately reset to a hyperpolarized level Vreset.  There is no explicit 
modeling of the ion channel kinetics responsible for this spiking.  Rather, it is simply assumed (a 
reasonable assumption…) that once the cell reaches its threshold it will rapidly produce an action 
potential and reset itself.  The reason we can get away with this assumption is that we don’t 
really care about the exact shape of the action potential:  since all action potentials sent down the 
axon are to a good approximation identical, the only informative feature of a neuron’s spiking is 
the times at which the action potentials occur. 
 
I. Mathematics of the integrate-and-fire neuron 
 Consider a neuron modeled as a leaky capacitor with membrane resistance Rm, time 
constant τm=RmCm (where Cm is the membrane’s capacitance), and resting potential EL.  Below 
the action potential threshold, the equation for the voltage of this cell when it receives current 
injection Ie is: 

 m L
dV E V R I
dt

τ = − + m e  (1) 

  
Exercise: When the current injection Ie is constant over time, verify  
(i) that the solution to this equation is: 
 ( )0( ) ( ( ) ) exp ( ) /L m e L m e o mV t E R I V t E R I t t τ= + + − − − −   (2) 
where the constant t0 is any reference time.  (Do this by inserting the solution on both sides of 

equation (1).  Recall that ( )( ) ( ) ( )f t f td de e
dt dt

=
f t

e

). 

 
(ii) that when t=t0, the left and right sides of equation (2) agree (and both equal what value?), and  
 
(iii) that when t → ∞, V(t) → . L mV E R I∞ ≡ +
 
 Setting t0 equal to the current time in a computer simulation and t equal to the time a 
single time-step Δt later gives the one-time-step update rule we will use for simulating the 
integrate-and-fire neuron (and which we will use more generally for simulating any equation of 
the form of equation (1) above, e.g. in your homework for the spike-rate-adaptation conductance 
if we substitute gsra for V and set EL=Ie=0): 
 ( )( ) expL m e L m e mV E R I V E R I t /τ→ + + − − −Δ , 

1 



where this notation means that, in the time step Δt, the voltage gets updated from its old value to 
the value on the right of the arrow, i.e. (in mathematics notation, in terms of the actual time t) 
 ( )( ) ( ) ( ( ) ( )) exp /L m e L m e mV t t E R I t V t E R I t t τ+ Δ = + + − − −Δ  (3) 
or (in MATLAB notation, in terms of values at time step i) 
 ( )( 1) ( ) ( ( ) ( )) exp /L m e L m e mV i E R I i V i E R I i t τ+ = + + − − −Δ  (4)  
Now let’s see how to implement this… 
 
II. Today’s model: the integrate-and-fire neuron 
In the following sections, our goal will be to verify the firing rate r vs. (constant) injected current 
relationship for the integrate-and-fire model neuron: 
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where tisi is the interspike interval for an integrate-and-fire neuron receiving constant current 
input Ie=I0=constant and Ithreshold  is the minimum level of current injection needed to make the 
neuron fire. 
 
To confirm this relation, we will build a model integrate-and-fire neuron that obeys the equation 
(equation (1)) 

 m L
dV E V R I
dt

τ = − + m e  

for voltages below the action potential threshold and spikes whenever it reaches the action 
potential threshold.  For concreteness, we will use parameter values EL = -70 mV, Rm = 10 MΩ, 
and τm=10 ms.  We will assume that, initially (i.e. at t=0), V = EL.   

To model the spiking of the neuron when it reaches threshold, we will assume that when 
the membrane potential reaches Vth = -55 mV, the neuron fires a spike and then resets its 
membrane potential to Vreset = -75 mV.   

We will inject various levels of current Ie into the neuron and, to calculate the firing rate, 
we will count the number of action potentials in a fixed amount of time.  For starters, we will 
assume that the neuron receives a 300-ms-long current pulse of magnitude I0 beginning at time 
tpulse=100 ms and plot several representative values of Ie that produce firing rates between 1 and 
100 Hz.  We will run our our simulations for 500 ms total (i.e. 100 ms with Ie=0; 300 ms with 
Ie=I0 > 0; and another 100 ms with Ie=0).  We will run our simulation with a time step dt = 0.1 
ms.   
 As the final output, we will produce graphs of voltage vs. time for several levels of I0 and 
a summary graph comparing rtheory to the average firing rate rave of the neuron over a 
measurement time T, defined as: 

 # of AP's in time T
T Tave

Nr = =  (6) 
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III. Step 1: Model the subthreshold voltage dynamics 
As a first step, we will model just the subthreshold dynamics of the model governed by equation 
(1).  In the next section, we will add the spiking.  Our general overall strategy is to break our 
code into the following sections: 

1. Define the parameters in the model 
2. Define the vectors that will hold our final results such as the time, voltage, and current; 
and assign their initial values corresponding to t=0. 
3. Integrate the equation(s) of the model to obtain the values of the above vectors at later 
times by updating the values at the previous time step with the update rule. 
4. Make pretty plots of our results. 

 
First, let’s open a new m-file and name it something memorable like “IntAndFire1.m”. 
Let’s put a comment right at the top: 
% Lab 2: Build an integrate-and-fire model neuron and observe its spiking  
%             for various levels of injected current 
 
Now let’s ensure (as we should always do) that all variables are cleared and figures are closed by 
adding: 
clear all;  %clear all variables 
close all;  %close all open figures 
 
It is good programming style to next assign values to all model parameters in a well-marked 
section of your code.  We need to assign values to the following parameters (type this code): 
 
%DEFINE PARAMETERS 
dt = 0.1; %time step [ms] 
t_end = 500; %total time of run [ms] 
t_StimStart = 100;  %time to start injecting current [ms] 
t_StimEnd = 400; %time to end injecting current [ms] 
E_L = -70; %resting membrane potential [mV] 
V_th = -55;  %spike threshold [mV] 
V_reset = -75; %value to reset voltage to after a spike [mV] 
V_spike = 20; %value to draw a spike to, when cell spikes [mV] 
R_m = 10; %membrane resistance [MOhm] 
tau = 10; %membrane time constant [ms] 
 
Notice that we have made a comment describing each parameter and noting its units.  Checking 
that your units make sense (i.e. that both sides of any equation have the same units) is very 
important and a good way to find errors. 
 
Next, it is good to set up the initial conditions for the run (i.e. specify what the values of the 
relevant variables will be at time t=0) and to define and initialize variables (often vectors) that 
will hold all of the information we eventually might want to plot or use for other purposes.  In 
our case, we are certainly going to plot voltage vs. time so let’s define a time vector running 
from t=0 to t=t_end in time steps of size dt; and a corresponding voltage vector that will hold the 
voltage at each of these times.  As a placeholder, let’s initially assign the voltage vector to be all 
zeros.  Note below that I put “_vect” on the end of the names of all vector variables – this 
notation helps to keep track of which variables are simply numbers (scalars) versus vectors. 
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%DEFINE INITIAL VALUES AND VECTORS TO HOLD RESULTS 
t_vect = 0:dt:t_end;  %will hold vector of times 
V_vect = zeros(1,length(t_vect));  %initialize the voltage vector 
                                         %initializing vectors makes your code 
                                         %run faster! 
 
Aside:  this initial setting up of the voltage vector to be the correct size is not strictly necessary 
but makes your code run faster.  This is because it takes MATLAB a long time to create new 
vectors or change the size of old vectors (for the computer science whizzes, this is because 
creating or changing the size of vectors requires MATLAB to ask the computer for memory in 
which to store the vector, which is a slow and complicated process). 
 
One more thing to add to the above section:  We said that we initially want V = E_L so let’s set 
the first element of V to this value (recall that the first element of the t_vector is t=0).  It will be 
useful to have a variable corresponding to the index of the array so let’s also define the variable i 
as the current element of V being assigned: 
 
i = 1;   % index denoting which element of V is being assigned 
V_vect(i)=E_L;  %first element of V, i.e. value of V at t=0 
 
Good!  Now we’re ready to integrate equation (1).  First, let’s define the current injected at all 
times as I_e_vect.  For now, set I_e_vect=zeros for all time.  We’ll try a few more interesting 
values soon.  (Note: you may wonder why we didn’t define I_e_vect in the parameters section.  
We could and maybe even should have, but here I am anticipating that we will later do a loop 
over various I_e_vect values.  Stay tuned…). 
 
%INTEGRATE THE EQUATION tau*dV/dt = -V + E_L + I_e*R_m 
I_e_vect = zeros(1,length(t_vect));  %injected current [nA] 
 
To do this integration, we now use the rule described in equation (3).  We’re clearly going to 
need to iterate this rule many times.  That should be a clear signal to us that it’s time to use a for 
loop that iterates over the values of t.  Let’s set that up and then fill in the inside of the loop later: 
 
for t=dt:dt:t_end  % loop through values of t in steps of dt ms 
 
 
end 
 
Note that we start the loop at time dt because we already have the initial values t=0 and 
V(t=0)=E_L defined.  Now let’s fill in the inside of the loop.  We need to first denote which 
element of V_vect is being updated (this should be one more than the last time through the loop, 
i.e. set i = i + 1) and then run our update rule to assign the appropriate value of V to this element 
of V_vect.  The loop should read: 
 
for t=dt:dt:t_end   %loop through values of t in steps of dt ms    
    V_inf = E_L + I_e_vect(i)*R_m;  %value that V_vect is exponentially  
          %decaying towards at this time step  
    %next line does the integration update rule 
    V_vect(i+1) = V_inf + (V_vect(i) - V_inf)*exp(-dt/tau);   
    i = i + 1;  %add 1 to index, corresponding to moving forward 1 time step 
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end 
 
Great!  Now that we’ve assigned v, we’re ready to plot.  Add some plotting code next: 
 
%MAKE PLOTS 
figure(1) 
plot(t_vect, V_vect);   
title('Voltage vs. time'); 
xlabel('Time in ms'); 
ylabel('Voltage in mV'); 
 
Now go to your MATLAB command window and run your file.  You should see a solid trace at  
-70 mV (if you don’t, peek ahead and the code you should have typed will be summarized).  This 
is exactly right:  you assigned the voltage to start at rest and then didn’t inject any current so the 
voltage stayed at rest.  If you like, try playing with changing your initial voltage and see what 
happens (please remember to set it back to E_L before continuing on!).  
 
Next, we said that we wanted to start stimulating at time t_StimStart = 100 ms and end at time 
t_StimEnd = 400 ms.  Between 100 and 400 ms, let’s set the elements of I_e_vect = I_StimPulse 
where I_StimPulse is the amplitude of the injected current during the stimulation.  Let’s set this 
to a value I_StimPulse = 1 nA.  We could do this in 2 ways: 
 1) Within the loop use an if statement that says:  if (t<100 || t>400) then assign the 
elements of I_e_vect = 0; else assign I_e_vect = I_StimPulse. (Note: || is MATLAB’s symbol for 
the logical word OR; MATLAB’s symbol for the logic word AND is &&).  This is the most 
conceptually straightforward way but is not particularly efficient. 
 
 2) The more efficient way of doing the assignment is just to replace the line I_e_vect = 
zeros(1,length(t_vect));  by an appropriate line defining the vector.  Since dt=0.1 ms, we really 
want the first 1000 elements (from t=0.0 to t=99.9 ms) to equal zero; the next 3001 elements 
(from t=100.0 to t=400.0 ms) to equal I_StimPulse; and the final 1000 elements (from t=400.1 to 
t=500 ms) to equal zero. 
 
We can do the latter by the following lines (replace the previous I_e_vect line by this, and see 
next paragraph for detailed explanation): 
 
I_Stim = 1;  %magnitude of pulse of injected current [nA] 
I_e_vect = zeros(1,t_StimStart/dt);  %portion of I_e_vect from t=0 to t=t_StimStart 
I_e_vect = [I_e_vect  I_Stim*ones(1,1+((t_StimEnd-t_StimStart)/dt))]; %add portion from  
                                                                   % t=t_StimStart to t=t_StimEnd 
I_e_vect = [I_e_vect  zeros(1,(t_end-t_StimEnd)/dt)]; %add portion from  
                                                                     % t=t_StimEnd to t=t_end 
 
In the second line, we set up the first portion of the vector as a row of zeros with the number of 
elements equal to t_StimStart/dt, which is the number of time points between zero and the 
stimulus start time.  In the next line, we append to this vector a row of values I_Stim for all time 
point between t_StimStart and t_StimEnd (including the points t=tStimStart and the point 
t=tStimEnd.  The “1+” covers this.  For example, if tStimStart = 10, tStimEnd = 11, and dt = 0.1, 
then there would be eleven 5’s appended to I_e_vector here.).  In the final line above, we append 
to I_e_vect another row of zeros corresponding to times from t=tStimEnd to t=t_end.  We could 
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actually have done this all in one line but it would have made our code harder to read without a 
major savings in efficiency. If you want to see the vector output from any of these lines, just 
remove the semicolon and see the print out (Warning: there are a lot of entries here!  Use 
Control-C, which makes MATLAB stop whatever it is doing and return to the Command 
Prompt, to stop the output if you get tired of it scrolling across your screen).  You could also type 
a length() statement to just check the lengths of these vectors.  Checking lengths of vectors and 
size’s of arrays is a very useful tool in debugging your code. 
 
Now run your code.  It should rise exponentially towards -60mV starting at t = 100, then decay 
back down exponentially at t = 400 (both rise and decay with time constants τ = 10 ms) as shown 
below.  Try out some other values of I_Stim on your own to get a feeling for how big a voltage 
change you get for different values of I_Stim.   
 

 
 
To summarize, your code at this stage should read: 
 
% Lab 2: Build an integrate-and-fire model neuron and observe its spiking  
%             for various levels of injected current 
  
clear all;  %clear all variables 
close all;  %close all open figures 
  
%DEFINE PARAMETERS 
dt = 0.1; %time step [ms] 
t_end = 500; %total time of run [ms] 
t_StimStart = 100;  %time to start injecting current [ms] 
t_StimEnd = 400; %time to end injecting current [ms] 
E_L = -70; %resting membrane potential [mV] 
V_th = -55;  %spike threshold [mV] 
V_reset = -75; %value to reset voltage to after a spike [mV] 
V_spike = 20; %value to draw a spike to, when cell spikes [mV] 
R_m = 10; %membrane resistance [MOhm] 
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tau = 10; %membrane time constant [ms] 
  
%DEFINE INITIAL VALUES AND VECTORS TO HOLD RESULTS 
t_vect = 0:dt:t_end;  %will hold vector of times 
V_vect = zeros(1,length(t_vect));   %initialize the voltage vector 
                                        %initializing vectors makes your code 
                                        %run faster! 
i = 1;   % index denoting which element of V is being assigned 
V_vect(i)=E_L;  %first element of V, i.e. value of V at t=0 
  
%INTEGRATE THE EQUATION tau*dV/dt = -V + E_L + I_e*R_m 
I_Stim = 1;  %magnitude of pulse of injected current [nA] 
I_e_vect = zeros(1,t_StimStart/dt);  %portion of I_e_vect from t=0 to t=t_StimStart 
I_e_vect = [I_e_vect I_Stim*ones(1,1+((t_StimEnd-t_StimStart)/dt))]; %add portion from  
                                                                        % t=t_StimStart to t=t_StimEnd 
I_e_vect = [I_e_vect zeros(1,(t_end-t_StimEnd)/dt)]; %add portion from  
                                                        % t=t_StimEnd to t=t_end 
for t=dt:dt:t_end   %loop through values of t in steps of dt ms    
    V_inf = E_L + I_e_vect(i)*R_m;  %value that V_vect is exponentially  
                                     %decaying towards at this time step     
    %next line does the integration update rule 
    V_vect(i+1) = V_inf + (V_vect(i) - V_inf)*exp(-dt/tau);   
    i = i + 1;  %add 1 to index, corresponding to moving forward 1 time step 
end 
  
%MAKE PLOTS 
figure(1) 
plot(t_vect, V_vect);   
title('Voltage vs. time'); 
xlabel('Time in ms'); 
ylabel('Voltage in mV'); 
 
 
 
IV. Step 2: Add the spiking to the model and calculate the firing rate 
Hopefully you noticed that, no matter how large you made I_Stim, your neuron did not spike.  
Next, we will add the code to make the neuron spike and then reset each time its voltage reaches 
the threshold value V_th.  To do this, we need an if statement to detect when the voltage reaches 
V_th, and if so, we need to then reset the voltage back to V_reset.  This can be done by adding 
the following immediately after the assignment V_vect(i+1) = V_inf + (V_vect(i) - V_inf)*exp(-dt/tau);  
 
%if statement below says what to do if voltage crosses threshold 
if (V_vect(i+1) > V_th)  %cell spiked 
        V_vect(i+1) = V_reset;    %set voltage back to V_reset 
end  
 
Try running this code with I_Stim = 1.55.  You should see the neuron reset its voltage each time 
it reaches V_th = -55 mV.  This should occur 8 times.  However, you are probably wondering, 
“Where are the beautiful spikes going up to some high voltage?”  Well, in truth, the integrate-
and-fire model never really assigns a voltage above V_th.  Every time threshold is reached, it 
immediately resets the voltage to V_reset (which is our signal that a spike occurred at this time, 
if we were trying to count the number of spikes).   
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Well, we certainly want to make our plots prettier than that so let’s “by hand” (well, aided by the 
computer…) assign a new vector we’ll call V_plot_vect which replaces the first time point after 
threshold by a beautiful point at a voltage V=V_spike = 20 mV (or whatever value you find to be 
aesthetically appealing).  We can do this by creating this vector in the “Define initial values…” 
section and also there assigning its first value to be equal to the value of the Voltage vector.  Do 
this by modifying that section of the code to read: 
 
%DEFINE INITIAL VALUES AND VECTORS TO HOLD RESULTS 
t_vect = 0:dt:t_end; %will hold vector of times 
V_vect = zeros(1,length(t_vect)); %initialize the voltage vector 
                                               %initializing vectors makes your code run faster! 
V_plot_vect = zeros(1,length(t_vect)); %pretty version of V_vect to be plotted, that displays a spike 
        % whenever voltage reaches threshold 
i = 1;   % index denoting which element of V is being assigned 
V_vect(i)= E_L;  %first element of V, i.e. value of V at t=0 
V_plot_vect(i) = V_vect(i);  %if no spike, then just plot the actual voltage V 
 
Then modify the integration loop to assign this vector by replacing the if statement above by: 
if (V_vect(i+1) > V_th)  %cell spiked 
        V_vect(i+1) = V_reset;    %set voltage back to V_reset 
        V_plot_vect(i+1) = V_spike; %set vector that will be plotted to show a spike here 
else   %voltage didn't cross threshold so cell does not spike 
        V_plot_vect(i+1) = V_vect(i+1); %plot the actual voltage 
end 
 
Now also change your plotting command to plot V_plot_vect rather than V_vect and run your 
program.  You should see 8 beautiful spikes(!) like the following: 
 

   
 
Finally, we would like to compute the average firing rate of the cell during the time of 
stimulation.  A cell’s average firing rate over a specified period of time is the number of spikes 
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produced over the specified time period:  rave=(# of spikes)/(time period).  A special situation is 
when we choose the period of time to be from immediately after one spike’s occurrence to 
immediately after the next spike’s occurrence.  This time period between spikes is known as the 
interspike interval and is denoted by tisi.  The corresponding firing rate is risi = 1/tisi, and this is 
what we calculated exactly in class for the integrate-and-fire model neuron receiving a constant 
stimulating current. Here, we will more simply calculate rave by counting the number of spikes 
that occurred during the stimulation period and then dividing by this time period.  In the next 
section, we compare this value to the value of risi that we calculated in class. 
 
To count the number of spikes, we add a new variable to our code called NumSpikes that we set 
initially to zero (since no spikes have occurred at the beginning of the simulation) and that we 
increase in value by 1 every time a spike occurs.  We then divide this number by the duration of 
stimulation to get the firing rate in # spikes/ms.  To convert from # spikes/ms to # spikes/sec we 
then multiply by 1000.   
 
To do this, add just before your for loop the line: 
NumSpikes = 0 %holds number of spikes that have occurred 
 
Then add the following code within the if statement that identifies a spike: 
NumSpikes = NumSpikes + 1 %add 1 to the total spike count 
 
Finally, just after the end of your for loop add the line defining the average firing rate: 
AveRate = 1000*NumSpikes/(t_StimEnd - t_StimStart) %gives average firing rate in [#/sec = Hz]   
 
Leave off the semicolons so that the values output to your screen.  Try this for a few values of 
I_Stim (to be realistic try to keep the firing rate between 0 and 100 Hz).  For IStim=1.55 you 
should get a rate of 26.6667 Hz.  [After trying this, add semicolons after the first 2 lines you 
assigned above so that NumSpikes doesn’t keep printing to your screen.] 
 
Your code for this section should now read:   
 
% Lab 2: Build an integrate-and-fire model neuron and observe its spiking  
%             for various levels of injected current 
  
clear all;  %clear all variables 
close all;  %close all open figures 
  
%DEFINE PARAMETERS 
dt = 0.1; %time step [ms] 
t_end = 500; %total time of run [ms] 
t_StimStart = 100;  %time to start injecting current [ms] 
t_StimEnd = 400; %time to end injecting current [ms] 
E_L = -70; %resting membrane potential [mV] 
V_th = -55;  %spike threshold [mV] 
V_reset = -75; %value to reset voltage to after a spike [mV] 
V_spike = 20; %value to draw a spike to, when cell spikes [mV] 
R_m = 10; %membrane resistance [MOhm] 
tau = 10; %membrane time constant [ms] 
  
%DEFINE INITIAL VALUES AND VECTORS TO HOLD RESULTS 
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t_vect = 0:dt:t_end; %will hold vector of times 
V_vect = zeros(1,length(t_vect)); %initialize the voltage vector 
                                               %initializing vectors makes your code run faster! 
V_plot_vect = zeros(1,length(t_vect)); %pretty version of V_vect to be plotted, that displays a spike 
                       % whenever voltage reaches threshold 
i = 1;   % index denoting which element of V is being assigned 
V_vect(i)= E_L;  %first element of V, i.e. value of V at t=0 
V_plot_vect(i) = V_vect(i);  %if no spike, then just plot the actual voltage V 
  
%INTEGRATE THE EQUATION tau*dV/dt = -V + E_L + I_e*R_m 
I_Stim = 1.55;  %magnitude of pulse of injected current [nA] 
I_e_vect = zeros(1,t_StimStart/dt);  %portion of I_e_vect from t=0 to t=t_StimStart 
I_e_vect = [I_e_vect I_Stim*ones(1,1+((t_StimEnd-t_StimStart)/dt))]; %add portion from  
                                                                                                     % t=t_StimStart to t=t_StimEnd 
I_e_vect = [I_e_vect zeros(1,(t_end-t_StimEnd)/dt)]; %add portion from  
                                                                                           % t=t_StimEnd to t=t_end 
NumSpikes = 0; %holds number of spikes that have occurred 
for t=dt:dt:t_end   %loop through values of t in steps of dt ms    
    V_inf = E_L + I_e_vect(i)*R_m;  %value that V_vect is exponentially  
                                     %decaying towards at this time step     
    %next line does the integration update rule 
    V_vect(i+1) = V_inf + (V_vect(i) - V_inf)*exp(-dt/tau);  
    %if statement below says what to do if voltage crosses threshold 
    if (V_vect(i+1) > V_th)  %cell spiked 
        V_vect(i+1) = V_reset;    %set voltage back to V_reset 
        V_plot_vect(i+1) = V_spike; %set vector that will be plotted to show a spike here 
        NumSpikes = NumSpikes + 1; %add 1 to the total spike count 
    else   %voltage didn't cross threshold so cell does not spike 
        V_plot_vect(i+1) = V_vect(i+1); %plot the actual voltage 
    end 
    i = i + 1;  %add 1 to index, corresponding to moving forward 1 time step 
end 
AveRate = 1000*NumSpikes/(t_StimEnd - t_StimStart) %gives average firing rate in [#/sec = Hz]   
  
%MAKE PLOTS 
figure(1) 
plot(t_vect, V_plot_vect);   
title('Voltage vs. time'); 
xlabel('Time in ms'); 
ylabel('Voltage in mV'); 
 
 
V. Step 3: Compare risi,theory to rave 
Save your work from the last section and then use Save As… to rename the file you are working 
on to something new (e.g. to IntAndFire3.m).   
 
Next we’d like to compare the theoretical value for the firing rate of the integrate-and-fire neuron 
risi=1/tisi (equation (5)) to the value of rave we calculated above.  We’ll do this for several values 
of I_Stim (i.e. of I_e in equation (5)).  How are we going to efficiently run our code for several 
different values of I_Stim?  You guessed it…use another for loop! 
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First, take a moment to indent all the lines below (but not including) I_Stim = 1.55 by selecting 
them and then clicking Text >> Increase Indent.  This will make the following code more 
readable. 
 
Now let’s turn our code into a for loop by defining a vector of stimuli and then looping over it.  
Erase the I_Stim = 1.55 line and replace it by: 
 
I_Stim_vect = 1.43:0.04:1.63;  %magnitudes of pulse of injected current [nA] 
for I_Stim = I_Stim_vect;  %loop over different I_Stim values  
 
Also add as the last line of your entire code: 
end   %for I_Stim 
 
This is needed to finish the for loop.  The code you just added will allow you to loop over 6 
values of I_Stim from 1.43 to 1.63.  Each time we loop we’re going to want to re-initialize the 
voltage vector and voltage plotting vector so cut and paste your previously typed lines: 
 
i = 1;   % index denoting which element of V is being assigned 
V_vect(i)= E_L;  %first element of V, i.e. value of V at t=0 
V_plot_vect(i) = V_vect(i);  %if no spike, then just plot the actual voltage V 
 
to be the first lines of your new for loop.  Now we’re also going to want to make separate plots 
for each run so let’s define a variable PlotNum corresponding to the number of plots.  Initialize 
PlotNum to zero above the for loop, and then have it increase by 1 every time we step through the 
for loop.  Your %INTEGRATE THE EQUATION code should now start with: 
 
PlotNum=0; 
I_Stim_vect = 1.43:0.04:1.63; 
for I_Stim = I_Stim_vect;  %magnitude of pulse of injected current [nA] 
  PlotNum = PlotNum + 1; 
  i = 1;   % index denoting which element of V is being assigned 
  V_vect(i)= E_L;  %first element of V, i.e. value of V at t=0 
  V_plot_vect(i) = V_vect(i);  %if no spike, then just plot the actual voltage V 
 
 
Now let’s set up to make an array of plots:  Below the command figure(1), make your code now 
read: 
 
  subplot(length(I_Stim_vect),1,PlotNum) 
  plot(t_vect, V_plot_vect); 
  if (PlotNum == 1) 
    title('Voltage vs. time'); 
  end 
  if (PlotNum == length(I_Stim_vect)) 
    xlabel('Time in ms');        
  end  
  ylabel('Voltage in mV'); 
end  %for I_Stim   
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The subplot command sets up an array of plots with length(I_Stim_vect) rows and 1 column.  The 
if statements make the title only plot above the first subplot and the x-axis label only plot below 
the last plot.  Try running your code now.  This should produce the following panels, the first 2 
with no spikes and the latter ones with increasing numbers of spikes: 
 

 
 
This should look like the effect of increasing light intensity on the spiking of neurons of the eye 
in Hartline’s paper!  In this context, we are assuming that the effect of increasing light is simply 
to increase the current injected into the neuron and thereby to increase its firing rate. 
 
Now let’s add another figure that plots the theoretical firing rate vs. I_e curve for values of I_e 
above firing rate threshold I_threshold = (V_th - E_L)/R_m.  This is easily done by defining a 
vector of injected currents (let’s call it I_vect_long since it will contain many points) and then 
typing in the ugly formula for risi from equation (5)).  If we want to plot from just above 
I_threshold to I_e = 1.8 in fine steps of 0.001, the code is (add to end of your code):   
 
%COMPARE R_AVE TO R_ISI 
I_threshold = (V_th - E_L)/R_m; %current below which cell does not fire 
I_vect_long = (I_threshold+0.001):0.001:1.8; %vector of injected current for producing theory plot 
r_isi = 1000./(tau*log((V_reset - E_L - I_vect_long*R_m)./(V_th - E_L - I_vect_long*R_m))); 
figure(2) 
plot(I_vect_long,r_isi) 
title('Comparison of r_{isi} vs. I_e and r_{ave} vs. I_e') 
xlabel('Injected current (nA)') 
ylabel('r_{isi} or r_{ave} (Hz)') 
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The formula is quite ugly (but correct…).  Things to note here are: 1) that we need to use ./ to tell 
MATLAB that we are dividing all the values element by element in producing risi from 
I_vect_long, and 2) That the underscore in figure labels tells MATLAB to subscript and the 
braces tell MATLAB to subscript everything included in the braces (try leaving them off and see 
what happens).  Try running your code now. 
 
Ok—final step (hooray!).  We now want to add onto this graph the values of r_ave 
corresponding to the runs shown in figure 1.  To do this we should turn r_ave into a vector with 
elements indexed by PlotNum (i.e. the first element of r_ave will correspond to the first plot, the 
second element to the 2nd plot, and so on).  Thus replace the AveRate assignment line by:  
 
AveRate_vect(PlotNum) = 1000*NumSpikes/(t_StimEnd - t_StimStart) %gives average firing   
             %rate in [#/sec = Hz] 
 
Finally, let’s add a plot of the AveRate vs. I_Stim points (let’s do red circles) to the theory plot 
by telling this graph to hold on. I.e., following the first plot command line of figure 2, add the 2 
lines: 
 
hold on 
plot(I_Stim_vect,AveRate_vect,'ro') 
 
Finally, make the very last line of the .m file : 
 
hold off  %to ensure that doesn't keep this data the next time you want to plot something 
 
Try running this code.  You should see the following: 

 
 
How well does rave match risi?  If we started our time window of counting spikes for computing 
rave when the voltage was at Vreset (e.g. just after a spike) and ended our time window just after 
another spike, then these two measures should be exactly the same.  However, if our time 
window of counting is not exactly equal to a constant number of interspike intervals, then there 
may be a difference.  For example, if we ended our time window just before a spike, then for a 
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300 ms window, this will lower rave by (1 spike)/(300 ms) = 1/(0.3 sec) = 3.33 Hz.  rave could also 
be higher than risi if, for example, we were to start our time window for counting spikes at a time 
when the voltage is higher than Vreset and end our time window just after a spike (e.g. if our time 
window went from just before a spike to just after a spike, we could count 2 spikes in an interval 
just barely longer than tisi).  Looking at the 3rd, 5th, and 6th panels of Figure 1, the cell was about 
to spike when we cut off the stimulus, so our rave rate is smaller than risi=1/tisi.  Try running for a 
longer time and see if this helps out. 
 
VI. Code summary 
Your final code from this lab should be: 
 
% Lab 2: Build an integrate-and-fire model neuron and observe its spiking  
%             for various levels of injected current 
  
clear all;  %clear all variables 
close all;  %close all open figures 
  
%DEFINE PARAMETERS 
dt = 0.1; %time step [ms] 
t_end = 500; %total time of run [ms] 
t_StimStart = 100;  %time to start injecting current [ms] 
t_StimEnd = 400; %time to end injecting current [ms] 
E_L = -70; %resting membrane potential [mV] 
V_th = -55;  %spike threshold [mV] 
V_reset = -75; %value to reset voltage to after a spike [mV] 
V_spike = 20; %value to draw a spike to, when cell spikes [mV] 
R_m = 10; %membrane resistance [MOhm] 
tau = 10; %membrane time constant [ms] 
  
%DEFINE INITIAL VALUES AND VECTORS TO HOLD RESULTS 
t_vect = 0:dt:t_end; %will hold vector of times 
V_vect = zeros(1,length(t_vect)); %initialize the voltage vector 
                                      %initializing vectors makes your code run faster! 
V_plot_vect = zeros(1,length(t_vect)); %pretty version of V_vect to be plotted, that displays a spike 
                       % whenever voltage reaches threshold 
  
%INTEGRATE THE EQUATION tau*dV/dt = -V + E_L + I_e*R_m 
PlotNum=0; 
I_Stim_vect = 1.43:0.04:1.63; %magnitudes of pulse of injected current [nA] 
for I_Stim = I_Stim_vect;  %loop over different I_Stim values  
    PlotNum = PlotNum + 1; 
    i = 1;   % index denoting which element of V is being assigned 
    V_vect(i)= E_L;  %first element of V, i.e. value of V at t=0 
    V_plot_vect(i) = V_vect(i);  %if no spike, then just plot the actual voltage V 
    I_e_vect = zeros(1,t_StimStart/dt);  %portion of I_e_vect from t=0 to t=t_StimStart 
    I_e_vect = [I_e_vect I_Stim*ones(1,1+((t_StimEnd-t_StimStart)/dt))]; %add portion from  
                                                                            % t=t_StimStart to t=t_StimEnd 
    I_e_vect = [I_e_vect zeros(1,(t_end-t_StimEnd)/dt)]; %add portion from  
                                                            % t=t_StimEnd to t=t_end 
    NumSpikes = 0; %holds number of spikes that have occurred 
    for t=dt:dt:t_end   %loop through values of t in steps of dt ms    
        V_inf = E_L + I_e_vect(i)*R_m;  %value that V_vect is exponentially  
                                         %decaying towards at this time step     
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        %next line does the integration update rule 
        V_vect(i+1) = V_inf + (V_vect(i) - V_inf)*exp(-dt/tau);  
        %if statement below says what to do if voltage crosses threshold 
        if (V_vect(i+1) > V_th)  %cell spiked 
            V_vect(i+1) = V_reset;    %set voltage back to V_reset 
            V_plot_vect(i+1) = V_spike; %set vector that will be plotted to show a spike here 
            NumSpikes = NumSpikes + 1; %add 1 to the total spike count 
        else   %voltage didn't cross threshold so cell does not spike 
            V_plot_vect(i+1) = V_vect(i+1); %plot the actual voltage 
        end 
        i = i + 1;  %add 1 to index, corresponding to moving forward 1 time step 
    end 
    AveRate_vect(PlotNum) = 1000*NumSpikes/(t_StimEnd - t_StimStart) %gives average firing                                           
                                                                     %rate in [#/sec = Hz]  
  
    %MAKE PLOTS 
    figure(1) 
    subplot(length(I_Stim_vect),1,PlotNum) 
    plot(t_vect, V_plot_vect); 
    if (PlotNum == 1) 
        title('Voltage vs. time'); 
    end 
    if (PlotNum == length(I_Stim_vect)) 
        xlabel('Time in ms');        
    end  
    ylabel('Voltage in mV'); 
end   %for I_Stim 
  
%COMPARE R_AVE TO R_ISI 
I_threshold = (V_th - E_L)/R_m; %current below which cell does not fire 
I_vect_long = (I_threshold+0.001):0.001:1.8; %vector of injected current for producing theory plot 
r_isi = 1000./(tau*log((V_reset - E_L - I_vect_long*R_m)./(V_th - E_L - I_vect_long*R_m))); 
figure(2) 
plot(I_vect_long,r_isi) 
hold on 
plot(I_Stim_vect,AveRate_vect,'ro') 
title('Comparison of r_{isi} vs. I_e and r_{ave} vs. I_e') 
xlabel('Injected current (nA)') 
ylabel('r_{isi} or r_{ave} (Hz)') 
hold off  %to ensure that doesn't keep this data the next time you want to plot something 
 


